1,896
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The effect of different treatments on abaca fibers used in cementitious composites

ORCID Icon, ORCID Icon & ORCID Icon

References

  • AENOR. 2000. UNE-EN 1015-3:2000/A2:2007. Métodos de ensayo para morteros de albañilería. Parte 3: Determinación de la consistencia del mortero fresco (por la mesa de sacudidas). Asociación Española de Normalización y Certificación 10:11.
  • AENOR. 2018. UNE-EN 196-1. Métodos de ensayo de cementos. Parte 1: Determinación de resistencias. Asociación Española de Normalización y Certificación 22:35.
  • ASTM International. 2018. ASTM C144-18, Standard Specification for Aggregate for Masonry Mortar. In Annual book of ASTM standards Vol. 04, 3. West Conshohocken, PA: ASTM International. doi:10.1520/C0144-18.
  • ASTM International. 2020. ASTM C1157/C1157M - 20a, Standard Performance Specification for Hydraulic Cement. In Annual book of ASTM standards Vol. 04, 5. West Conshohocken, PA: ASTM International. doi: 10.1520/C1157_C1157M-20A.
  • Benaimeche, O., A. Carpinteri, M. Mellas, C. Ronchei, D. Scorza, and S. Vantadori. 2018, July. The influence of date palm mesh fibre reinforcement on flexural and fracture behaviour of a cement-based mortar. Composites Part B: Engineering 152:292–14. (Elsevier). doi:10.1016/j.compositesb.2018.07.017.
  • Boulos, L., M. R. Foruzanmehr, A. Tagnit-Hamou, and M. Robert. 2019, December. The effect of a zirconium dioxide sol-gel treatment on the durability of flax reinforcements in cementitious composites. Cement and Concrete Research 115:105–15. (2017Elsevier). doi:10.1016/j.cemconres.2018.10.004.
  • Cai, M., H. Takagi, A. N. Nakagaito, M. Katoh, T. Ueki, G. I. N. Waterhouse, and L. Yan. 2015. Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Industrial Crops and Products 65:27–35. Elsevier B.V. doi:10.1016/j.indcrop.2014.11.048.
  • Cai, M., H. Takagi, A. N. Nakagaito, L. Yan, and G. I. N. Waterhouse. 2016. Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites, Part A, Applied Science and Manufacturing 90:589–97. Elsevier Ltd. doi:10.1016/j.compositesa.2016.08.025.
  • Çomak, B., A. Bideci, and Ö. Salli Bideci. 2018. Effects of hemp fibers on characteristics of cement based Mortar. Construction and Building Materials 169:794–99. doi:10.1016/j.conbuildmat.2018.03.029.
  • da Silva, E. J., M. Lidiane Marques, F. Garcia Velasco, C. Fornari Junior, F. Martínez Luzardo, and M. Mitsuuchi Tashima. 2017, January. A new treatment for coconut fibers to improve the properties of cement-based composites – combined effect of natural latex/pozzolanic materials. Sustainable Materials and Technologies 12:44–51. (2016Elsevier). doi: 10.1016/j.susmat.2017.04.003.
  • Eremin, A., A. Pustovgar, S. Pashkevich, I. Ivanova, and A. Golotina. 2016. Determination of calcium sulfate hemihydrate modification by X-Ray diffraction analysis. Procedia Engineering 165 (495):1343–47. Elsevier B.V. doi:10.1016/j.proeng.2016.11.862.
  • Ferreira, S. R., F. De Andrade Silva, P. Roberto Lopes Lima, and R. Dias Toledo Filho. 2015. Effect of fiber treatments on the sisal fiber properties and fiber-matrix bond in cement based systems. Construction and Building Materials 101:730–40. Elsevier Ltd. doi:10.1016/j.conbuildmat.2015.10.120.
  • Ferreira, S. R., F. de Andrade Silva, P. Roberto Lopes Lima, and R. Dias Toledo Filho. 2017. Effect of hornification on the structure, tensile behavior and fiber matrix bond of sisal, jute and curauá fiber cement based composite systems. Construction and Building Materials 139:551–61. Elsevier Ltd. doi:10.1016/j.conbuildmat.2016.10.004.
  • Ferreira, S. R., M. Pepe, E. Martinelli, F. de Andrade Silva, and R. Dias Toledo Filho. 2018, September. Influence of natural fibers characteristics on the interface mechanics with cement based matrices. Composites Part B: Engineering 140:183–96. (2017Elsevier). doi: 10.1016/j.compositesb.2017.12.016.
  • INEN. 2015. NTE INEN 2615:2012, Cemento Para Mortero. Requisitos. Quito: Instituto Ecuatoriano de Normalización.
  • Jiang, D., A. Penghui, S. Cui, X. Feng, T. Tuo, J. Zhang, and H. Jiang. 2018. Effect of leaf fiber modification methods on mechanical and heat-insulating properties of leaf fiber cement-based composite materials. Journal of Building Engineering 19 (May):573–83. doi:10.1016/j.jobe.2018.05.028.
  • Jianqiang, W., M. Siwei, and D. G. Thomas. 2016. Correlation between hydration of cement and durability of natural fiber-reinforced cement composites. Corrosion Science 106:1–15. Elsevier Ltd. doi:10.1016/j.corsci.2016.01.020.
  • Kim, H. S., S. G. Kumbar, and S. P. Nukavarapu. 2023, April. Amorphous silica fiber matrix biomaterials: An analysis of material synthesis and characterization for tissue engineering. Bioactive Materials 19:155–66. (2022KeAi Communications Co., Ltd). doi: 10.1016/j.bioactmat.2022.04.002.
  • Liu, K., H. Takagi, and Z. Yang. 2013. Dependence of tensile properties of abaca fiber fragments and its unidirectional composites on the fragment height in the fiber stem. Composites, Part A, Applied Science and Manufacturing 45:14–22. Elsevier Ltd. doi:10.1016/j.compositesa.2012.09.006.
  • Machado, P. J., R. A. dos Reis Ferreira, L. A. de Castro Motta, and D. Pasquini. 2020. Characterization and properties of cementitious composites with cellulose fiber, silica fume and latex. Construction and Building Materials 257. doi:10.1016/j.conbuildmat.2020.119602.
  • Onuaguluchi, O., and N. Banthia. 2016. Plant-based natural fibre reinforced cement composites: A review. Cement and Concrete Composites: 68–10896–108. Elsevier Ltd. doi:10.1016/j.cemconcomp.2016.02.014.
  • Pacheco-Torgal, F., and S. Jalali. 2011. Cementitious building materials reinforced with vegetable fibres: A review. Construction and Building Materials 25 (2):575–81. Elsevier Ltd. doi:10.1016/j.conbuildmat.2010.07.024.
  • Richter, S., K. Stromann, and J. Müssig. 2013. Abacá (musa textilis) grades and their properties-a study of reproducible fibre characterization and a critical evaluation of existing grading systems. Industrial Crops and Products 42 (1):601–12. Elsevier B.V. doi:10.1016/j.indcrop.2012.06.025.
  • Rueda-Ordóñez, Y. J., and K. Tannous. 2018. Drying and thermal decomposition kinetics of sugarcane straw by nonisothermal thermogravimetric analysis. Bioresource Technology 264 (September):131–39. Elsevier. doi:10.1016/J.BIORTECH.2018.04.064.
  • Segal, L., J. J. Creely, A. E. Martin, and C. M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Textile Research Journal 29 (10):786–94. doi:10.1177/004051755902901003.
  • Simbaña, E. A., P. E. Ordóñez, Y. F. Ordóñez, V. H. Guerrero, M. C. Mera, and E. A. Carvajal. 2020. Abaca: Cultivation, obtaining fibre and potential uses. Handbook of Natural Fibres: Second Edition 1 (January):197–218. doi:10.1016/B978-0-12-818398-4.00008-6.
  • Sinha, A. K., H. K. Narang, and S. Bhattacharya. 2017. Effect of alkali treatment on surface morphology of abaca fibre. Materials Today: Proceedings 4 (8):8993–96. Elsevier Ltd. doi:10.1016/j.matpr.2017.07.251.
  • Xue, L., L. G. Tabil, and S. Panigrahi. 2007. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment 15 (1):25–33. doi:10.1007/s10924-006-0042-3.