1,566
Views
2
CrossRef citations to date
0
Altmetric
Review

Review on the Hybridized Application of Natural Fiber in the Development of Geopolymer Concrete

ORCID Icon, &

References

  • Abbass, M., D. Singh, and G. Singh. 2021. Properties of hybrid geopolymer concrete prepared using rice husk ash, fly ash and GGBS with coconut fiber. Materials Today Proceedings. doi: 10.1016/j.matpr.2021.01.390.
  • Abdollahnejad, Z., M. Mastali, T. Luukkonen, P. Kinnunen, and M. Illikainen. 2018. Fiber-reinforced one-part alkali-activated slag/ceramic binders. Ceramics International 44 (8):8963–18. doi:10.1016/j.ceramint.2018.02.097.
  • Aisyah, H. A., P. M. Tahir, S. M. Sapuan, R. A. Ilyas, A. Khalina, N. M. Nurazzi, S. H. Lee, and C. H. Lee. 2021. A comprehensive review on advanced sustainable woven natural fibre polymer composites. Polymers 13. doi:10.3390/polym13030471.
  • Ali, A., M. Uysal, A. Yılmaz, M. M. Al-Mashhadani, O. Canpolat, F. Şahin, and Y. Aygörmez. 2019. Influence of wetting-drying curing system on the performance of fiber reinforced metakaolin-based geopolymer composites. Construction and Building Materials 225:909–26. doi:10.1016/j.conbuildmat.2019.07.235.
  • Alomayri, T., H. Assaedi, F. U. A. Shaikh, and I. M. Low. 2014. Effect of water absorption on the mechanical properties of cotton fabric-reinforced geopolymer composites. Journal of Asian Ceramic Societies 2 (3):223–30. doi:10.1016/j.jascer.2014.05.005.
  • Alomayri, T., and I. M. Low. 2013. Synthesis and characterization of mechanical properties in cotton fiber-reinforced geopolymer composites. Journal of Asian Ceramic Societies 1 (1):30–34. doi:10.1016/j.jascer.2013.01.002.
  • Alomayri, T., F. U. A. Shaikh, and I. M. Low. 2013. Characterisation of cotton fibre-reinforced geopolymer composites. Composites Part B: Engineering 50:1–6. doi:10.1016/j.compositesb.2013.01.013.
  • Alomayri, T., F. U. A. Shaikh, and I. M. Low. 2014. Effect of fabric orientation on mechanical properties of cotton fabric reinforced geopolymer composites. Materials & Design 57:360–65. doi:10.1016/j.matdes.2014.01.036.
  • Alshaaer, F. R. M., S. Mallouh, J. Al-Kafawein, Y. Al-Faiyz, T. Fahmya, and A. Kallel. 2017. Fabrication, microstructural and mechanical characterization of Luffa Cylindrical Fibre - Reinforced geopolymer composite. Applied Clay Science 143:125–33. doi:10.1016/j.clay.2017.03.030.
  • Assaedi, H., F. U. A. Shaikh, and I. M. Low. 2016. Characterizations of flax fabric reinforced nanoclay-geopolymer composites. Composites Part B: Engineering 95:412–22. doi:10.1016/j.compositesb.2016.04.007.
  • Castaneda, D., G. Silva, J. Salirrosas, S. Kim, B. Bertolotti, J. Nakamatsu, and R. Aguilar. 2020. Production of a lightweight masonry block using alkaline activated natural pozzolana and natural fibers. Construction and Building Materials 253:199143. doi:10.1016/j.conbuildmat.2020.119143.
  • Chen, R., S. Ahmari, and L. Zhang. 2014. Utilization of sweet sorghum fiber to reinforce fly ash-based geopolymer. Journal of Materials Science 49 (6):2548–58. doi:10.1007/s10853-013-7950-0.
  • Chen, K., W. Dazhi, L. Xia, Q. Cai, and Z. Zhang. 2021. Geopolymer concrete durability subjected to aggressive environments – a review of influence factors and comparison with ordinary Portland cement. Construction and Building Materials 279:122496. doi:10.1016/j.conbuildmat.2021.122496.
  • Correia, E., S. Torres, M. Alexandre, K. Gomes, N. Barbosa, and S. Barros. 2013. Mechanical performance of natural fibers reinforced geopolymer composites. Materials Science Forum 758:139–45. doi:10.4028/0000www.scientific.net/MSF.758.139.
  • da Silva Alves, L. C., R. A. dos Reis Ferreira, L. Bellini Machado, and L. A. de Castro Motta. 2019. Optimization of metakaolin-based geopolymer reinforced with sisal fibers using response surface methology. Industrial Crops and Products 139:111551. doi:10.1016/j.indcrop.2019.111551.
  • de Mendonça Neuba, L., R. F. Pereira Junio, M. P. Ribeiro, A. T. Souza, E. de Sousa Lima, F. D. C. Garcia Filho, A.B. -H.D.S. Figueiredo, F. D. O. Braga, A. R. G. D. Azevedo, and S. N. Monteiro. 2020. Promising mechanical, thermal, and ballistic properties of novel epoxy composites reinforced with cyperus malaccensis sedge fiber. Polymers 12 (8):1776. doi:10.3390/polym12081776.
  • Ganesan, N., R. Sahana, and P. V. Indira. 2017. Effect of hybrid fibers on tension stiffening of reinforced geopolymer concrete. Advances in Concrete Construction 5 (1):75–86. doi:10.12989/acc.2017.5.1.75.
  • Gopalakrishnan, R., and K. Chinnaraju. 2019. Durability of ambient cured alumina silicate concrete based on slag/fly ash blends against sulfate environment. Construction and Building Materials 204:70–83. doi:10.1016/j.conbuildmat.2019.01.153.
  • Guo, X., and G. Xiong. 2021. Resistance of fiber-reinforced fly ash-steel slag based geopolymer mortar to sulfate attack and drying-wetting cycles. Construction and Building Materials 269:121326. doi:10.1016/j.conbuildmat.2020.121326.
  • Khan, M. Z. N., Y. Hao, H. Hao, and F. U. A. Shaikh. 2017. Mechanical properties of ambient cured high strength hybrid steel and synthetic fibers reinforced geopolymer composites. Cement and Concrete Composites 85:133–52. doi:10.1016/j.cemconcomp.2017.10.011.
  • Khan, M. Z. N., Y. Hao, H. Hao, F. UAShaikh, and K. Liu. 2018a. Experimental evaluation of quasi static and dynamic compressive properties of ambient cured high strength plain and fibers reinforced geopolymer composites. Construction and Building Materials 166:482–99. doi:10.1016/j.conbuildmat.2018.01.166.
  • Khan, M. Z. N., Y. Hao, H. Hao, F. UAShaikh, and K. Liu. 2018b. Mechanical properties of ambient cured high strength plain and hybrid fibers reinforced geopolymer composites from triaxial compressive tests. Construction and Building Materials 185:338–53. doi:10.1016/j.conbuildmat.2018.07.092.
  • Komnitsas, K., D. Zaharaki, A. Vlachou, G. Bartzas, and M. Galetakis. 2015. Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers. Advanced Powder Technology 26 (2):368–76. doi:10.1016/j.apt.2014.11.012.
  • Kong, D., J. Sanjayan, and K. Sagoe-Crentsil. 2007. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cement and Concrete Research 37 (12):1583–89. doi:10.1016/j.cemconres.2007.08.021.
  • Korniejenko, K., E. Froczek, E. Pytlak, and M. Adamski. 2016. Mechanical properties of geopolymer composites reinforced with natural fibers. Procedia Engineering 151:388–93. doi:10.1016/j.proeng.2016.07.395.
  • Korniejenko, K., M. Łach, M. Hebdowsk-Krupa, and J. Mikuł. 2018. The mechanical properties of flax and hemp fibers reinforced geopolymer composites. In IOP Conference Series Materials Science and Engineering, Blansko-Cezkovice, 379: 012023.
  • Lazorenko, G., A. Kasprzhitskii, V. Yavna, V. Mischinenko, A. Kukharskii, and A. Kruglikov. 2020. Effect of pre-treatment of flax tows on mechanical properties and microstructure of natural fiber reinforced geopolymer composites. Environmental Technology and Innovation 20:101105. doi:10.1016/j.eti.2020.101105.
  • Li, W., E. D. Shumuye, T. Shiying, Z. Wang, and K. Zerfu. 2022. Eco-friendly fibre reinforced geopolymer concrete a critical review on the microstructure and long-term durability properties. Case Studies in Construction Materials 16:894. doi:10.1016/j.cscm.2022.e00894.
  • Ma, C. -K., A. Z. Awang, and W. Omar. 2018. Structural and material performance of geopolymer concrete: A review. Construction and Building Materials 186:90–102. doi:10.1016/j.conbuildmat.2018.07.111.
  • Maranan, G. B., A. C. Manalo, B. Benmokrane, W. Karunasena, P. Mendis, and T. Q. Nguyen. 2019. Flexural behaviour of geopolymer concrete beams longitudinally reinforced with GFRP and steel hybrid reinforcements. Engineering Structures 182:141–52. doi:10.1016/j.engstruct.2018.12.073.
  • Marvila, M. T., H. A. Rocha, A. R. G. de Azevedo, H. A. Colorado, J. F. Zapata, and C. Maurício Fontes Vieira. 2021. Use of natural vegetable fibers in cementitious composites concepts and applications. Innovative Infrastructure Solutions 6 (3):180. doi:10.1007/s41062-021-00551-8.
  • Masi, G., W. D. A. Rickard, M. Chiara, and A. Van Riessen. 2015. The effect of organic and inorganic fibres on the mechanical and thermal properties of aluminate activated geopolymers. Composites Part B: Engineering 76:218–28. doi:10.1016/j.compositesb.2015.02.023.
  • Mastali, M., Z. Abdollahnejad, and F. Pacheco-Torgal. 2018. Carbon dioxide sequestration of fly ash alkaline-based mortars containing recycled aggregates and reinforced by hemp fibres. Construction and Building Materials 160:48–56. doi:10.1016/j.conbuildmat.2017.11.044.
  • Narayanan Sivakumaresa Chockalingam, L., and N. Merina Rymond. 2021. Strength and durability characteristics of coir, kenaf and polypropylene fibers reinforced high performance concrete. Journal of Natural Fibers 19 (13):6692–700. doi:10.1080/15440478.2021.1929656.
  • Nedeljkovi, M., M. Lukovi, K. Van Breugel, D. Hordijk, and G. Ye. 2018. Development and application of an environmentally friendly ductile alkali-activated composite. Journal of Cleaner Production 180:524–38. doi:10.1016/j.jclepro.2018.01.162.
  • Nkwaju, R. Y., J. N. Y. Djobo, J. N. F. Nouping, P. W. M. Huisken, J. G. N. Deutou, and L. Courard. 2019. Iron-rich laterite-bagasse fi bers based geopolymer composite mechanical, durability and insulating properties. Applied Clay Science 183:105333. doi:10.1016/j.clay.2019.105333.
  • Palanisamy, E., and M. Ramasamy. 2020. Dependency of sisal and banana fiber on mechanical and durability properties of polypropylene hybrid fiber reinforced concrete. Journal of Natural Fibers 19 (8):3147–57. doi:10.1080/15440478.2020.1840477.
  • Palanisamy, P., and P. Suresh Kumar. 2018. Effect of molarity in geo polymer earth brick reinforced with fibrous coir wastes using sandy soil and quarry dust as fine aggregate. (Case Study) Case Studies in Construction Materials 8:347–58. doi:10.1016/j.cscm.2018.01.009.
  • Poletanovic, B., J. Dragas, I. Ignjatovic, M. Komljenovic, and I. Merta. 2020. Physical and mechanical properties of hemp fibre reinforced alkali-activated fly ash and fly ash/slag mortars. Construction and Building Materials 259:119677. doi:10.1016/j.conbuildmat.2020.119677.
  • Punurai, W., W. Kroehong, A. Saptamongkol, and P. Chindaprasirt. 2018. Mechanical properties, microstructure and drying shrinkage of hybrid fly ash-basalt fibers geopolymer paste. Construction and Building Materials 186:62–70. doi:10.1016/j.conbuildmat.2018.07.115.
  • Ramli, M., W. H. Kwan, and N. F. Abas. 2013. Application of non-corrosive barchip fibres for high strength concrete enhancements in aggressive environments. Composites Part B: Engineering 53:134–44. doi:10.1016/j.compositesb.2013.04.012.
  • Ribeiro, S., A. Ruy, G. S. R. Marilene, and K. Sankar. 2016. Geopolymer-bamboo composite – a novel sustainable construction material. Construction and Building Materials 123:501–07. doi:10.1016/j.conbuildmat.2016.07.037.
  • Sathiskumar, T. P., J. Naveen, and S. Satheeshkumar. 2017. Hybrid fiber reinforced polymer composites – a review. Journal of Reinforced Plastics and Composites 33:454–71. doi:10.1177/0731684413516393.
  • Shah, I., L. Jing, Z. Ming Fei, Y. Sheng Yuan, M. Umar Farooq, and N. Kanjana. 2020. A review on chemical modification by using sodium hydroxide (NaOH) to investigate the mechanical properties of sisal, coir and hemp fiber reinforced concrete composites. Journal of Natural Fibers 19 (13):5133–51. doi:10.1080/15440478.2021.1875359.
  • Simonovaa, H., B. Kucharczykova, L. Topolar, Z. Kersner, I. Merta, J. Dragas, I. Ignjatovic, M. Komljenovic, and V. Nikoli. 2018. Crack initiation of selected geopolymer mortars with hemp fibers. Procedia Structural Integrity 13:578–83. doi:10.1016/j.prostr.2018.12.095.
  • Souza, A. T., R. F. P. Junio, L. D. M. Neuba, V. S. Candido, A. C. R. da Silva, A. R. G. de Azevedo, S. N. Monteiro, and L. F. C. Nascimento. 2020. Caranan fiber from mauritiella armata palm tree as novel reinforcement for epoxy composites. Polymers 12 (9):2037. doi:10.3390/polym12092037.
  • Stalin, A., S. Mothilal, V. Vignesh, K. J. Nagarajan, and T. Karthick. 2021. Mechanical properties of typha angustata/vetiver/banana fiber mat reinforced vinyl ester hybrid composites. Journal of Natural Fibers 19 (13):5227–38. doi:10.1080/15440478.2021.1875366.
  • Trindade, A. C. C., P. H. R. Borges, and F. de Andrade Silva. 2018. Mechanical behavior of strain-hardening geopolymer composites reinforced with natural and PVA fibers. Materials Today Proceedings. doi: 10.1016/j.matpr.2019.02.017.
  • Walbruck, K., L. Drewler, S. Witzleben, and D. Stephan. 2021. Factors influencing thermal conductivity and compressive strength of natural fiber-reinforced geopolymer foams. Open Ceramics 5:100. doi:10.1016/j.oceram.2021.100065.
  • Wongsa, A., R. K. Wong, S. Naenudon, V. Sata, and P. Chindaprasit. 2020. Natural fibers reinforced high calcium fly ash geopolymer mortar. Construction and Building Materials 241:118143. doi:10.1016/j.conbuildmat.2020.118143.
  • Ye, H., Y. Zhang, Z. Yu, and J. Mu. 2018. Effects of cellulose, hemicellulose, and lignin on the morphology and mechanical properties of metakaolin-based geopolymer. Construction and Building Materials 173:10–16. doi:10.1016/j.conbuildmat.2018.04.028.
  • Zhang, H., P. K. Sarker, Q. Wang, B. He, and Z. Jianga. 2021. Strength and toughness of ambient-cured geopolymer concrete containing virgin and recycled fibres in mono and hybrid combinations. Construction and Building Materials 304:124649. doi:10.1016/j.conbuildmat.2021.124649.