997
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Systematic Investigation on the Mechanisms for Water Responsive Actuation Using Commercial Sewing Threads

&

References

  • Agnarsson, I., A. Dhinojwala, V. Sahni, and T. A. Blackledge. 2009. Spider silk as a novel high performance biomimetic muscle driven by humidity. The Journal of Experimental Biology 212 (13):1990–15. doi:10.1242/jeb.028282.
  • Cakmak, O., H. O. El Tinay, X. Chen, and O. Sahin. 2019. Spore-based water-resistant water-responsive actuators with high power density. Advanced Materials Technologies 4 (8):1800596. doi:10.1002/admt.201800596.
  • Chen, P., Y. Xu, S. He, X. Sun, S. Pan, J. Deng, D. Chen, and H. Peng. 2015. Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nature Nanotechnology 10:1077–83. doi:10.1038/nnano.2015.198.
  • Chen, Q., X. Yan, H. Lu, N. Zhang, and M. Ma. 2019. Programmable polymer actuators perform continuous helical motions driven by moisture. ACS Applied Materials & Interfaces 11 (22):20473–81. doi:10.1021/acsami.9b06398.
  • Chen, X., L. Mahadevan, A. Driks, and O. Sahin. 2014. Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators. Nature Nanotechnology 9 (2):137–41. doi:10.1038/nnano.2013.290.
  • Cheng, H., J. Liu, Y. Zhao, C. Hu, Z. Zhang, N. Chen, L. Jiang, and L. Qu. 2013. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Angewandte Chemie International Edition 52 (40):10482–86. doi:10.1002/anie.201304358.
  • Dawson, C., J. F. V. Vincent, and A.M. Rocca. 1997. How pine cones open. Nature 390 (6661):668. doi:10.1038/37745.
  • Djikanović, D., A. Devečerski, G. Steinbach, J. Simonović, B. Matović, G. Garab, A. Kalauzi, and K. Radotić. 2016. Comparison of macromolecular interactions in the cell walls of hardwood, softwood and maize by fluorescence and FTIR spectroscopy, differential polarization laser scanning microscopy and x-ray diffraction. Wood Science and Technology 50 (3):547–66. doi:10.1007/s00226-015-0792-y.
  • Elmogahzy, Y. 2019. Structure and mechanics of yarns. In Structure and mechanics of textile fibre assemblies, ed. P. Schwartz, 19–23. 2nd ed. Cambridge: Woodhead Publishing.
  • Haines, C. S., M. D. Lima, N. Li, G. M. Spinks, J. Foroughi, J. D. W. Madden, S. H. Kim, S. Fang, M. J. de Andrade, and F. Göktepe. 2014. Artificial muscles from fishing line and sewing thread. Science 343 (6173):868–72. doi:10.1126/science.1246906.
  • He, X., M. Aizenberg, O. Kuksenok, L. D. Zarzar, A. Shastri, A. C. Balazs, and J. Aizenberg. 2012. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature 487 (7406):214–18. doi:10.1038/nature11223.
  • Hishikawa, Y., E. Togawa, and T. Kondo. 2017. Characterization of individual hydrogen bonds in crystalline regenerated cellulose using resolved polarized FTIR spectra. ACS Omega 2 (4):1469–76. doi:10.1021/acsomega.6b00364.
  • Hu, J., M. I. Iqbal, and F. Sun. 2020. Wool can be cool: Water-actuating woolen knitwear for both hot and cold. Advanced Functional Materials 30 (51):2005033. doi:10.1002/adfm.202005033.
  • Jang, Y., S. M. Kim, G. M. Spinks, and S. J. Kim. 2020. Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems. Advanced Materials 32:1902670. doi:10.1002/adma.201902670.
  • Jia, T., Y. Wang, Y. Dou, Y. Li, M. J. de Andrade, R. Wang, S. Fang, J. Li, Z. Yu, and R. Qiao. 2019. Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles. Advanced Functional Materials 29 (18):1808241. doi:10.1002/adfm.201808241.
  • Jiang, H. Y., S. Kelch, and A. Lendlein. 2006. Polymers move in response to light. Advanced Materials 18 (11):1471–75. doi:10.1002/adma.200502266.
  • Kim, S. H., C. H. Kwon, K. Park, T. J. Mun, X. Lepró, R. H. Baughman, G. M. Spinks, and S. J. Kim. 2016. Bio-inspired, moisture-powered hybrid carbon nanotube yarn muscles. Scientific Reports 6 (1):1–7. doi:10.1038/srep23016.
  • Li, Y., and M. Miao. 2020. Water-responsive artificial muscles from commercial viscose fibers without chemical treatment. Materials Research Letters 8 (6):232–38. doi:10.1080/21663831.2020.1743787.
  • Liu, D., A. Tarakanova, C. C. Hsu, M. Yu, S. Zheng, L. Yu, J. Liu, Y. He, D. J. Dunstan, and M. J. Buehler. 2019. Spider dragline silk as torsional actuator driven by humidity. Science Advances 5 (3):eaau9183. doi:10.1126/sciadv.aau9183.
  • Ma, M., L. Guo, D. G. Anderson, and R. Langer. 2013. Bio-inspired polymer composite actuator and generator driven by water gradients. Science 339 (6116):186–89. doi:10.1126/science.1230262.
  • Morton, W. E., and J. W. S. Hearle. 2008. Physical properties of textile fibres.4th. Cambridge, England: Woodhead Publishing.
  • Mu, J., M. J. de Andrade, S. Fang, X. Wang, E. Gao, N. Li, S. Hyeong Kim, H. Wang, C. Hou, and Q. Zhang. 2019. Sheath-run artificial muscles. Science 365 (6449):150–55. doi:10.1126/science.aaw2403.
  • Park, Y., and X. Chen. 2020. Water-responsive materials for sustainable energy applications. Journal of Materials Chemistry A 8 (31):15227–44. doi:10.1039/D0TA02896G.
  • Park, Y., and E. Ford. 2018. Titanium oxide sol–gel induced wrinkling of electrospun nanofibers. Macromolecular Chemistry and Physics 219 (13):1800028. doi:10.1002/macp.201800028.
  • Park, Y., Y. Jung, T. Li, J. Lao, R. S. Tu, and X. Chen. 2020. Β-sheet nanocrystals dictate water responsiveness of Bombyx Mori silk. Macromolecular Rapid Communications 41 (7):1900612. doi:10.1002/marc.201900612.
  • Pelrine, R., R. Kornbluh, Q. Pei, and J. Joseph. 2000. High-speed electrically actuated elastomers with strain greater than 100%. Science 287 (5454):836–39. doi:10.1126/science.287.5454.836.
  • Piotrowska, R., T. Hesketh, H. Wang, A. R. G. Martin, D. Bowering, C. Zhang, C. T. Hu, S. A. McPhee, T. Wang, Y. Park, et al. 2021. Mechanistic insights of evaporation-induced actuation in supramolecular crystals. Nature Materials 20 (3):403–09. doi:10.1038/s41563-020-0799-0.
  • Reyssat, E., and L. Mahadevan. 2009. Hygromorphs: From pine cones to biomimetic bilayers. Journal of the Royal Society Interface 6 (39):951–57. doi:10.1098/rsif.2009.0184.
  • Sanchez, V., C. J. Walsh, and R. J. Wood. 2020. Textile technology for soft robotic and autonomous garments. Advanced Functional Materials 31 (6):2008278. doi:10.1002/adfm.202008278.
  • Song, K., E. Yeom, S.J. Seo, K. Kim, H. Kim, J.H. Lim, and S. J. Lee. 2015. Journey of water in pine cones. Scientific Reports 5 (1):1–8. doi:10.1038/srep09963.
  • Spinks, G. M. 2020. Advanced actuator materials powered by biomimetic helical fiber topologies. Advanced Materials 32:1904093. doi:10.1002/adma.201904093.
  • Thévenot, J., H. Oliveira, O. Sandre, and S. Lecommandoux. 2013. Magnetic responsive polymer composite materials. Chemical Society Reviews 42 (17):7099–116. doi:10.1039/c3cs60058k.
  • Wang, Y., and M. Miao. 2021. Helical shape linen artificial muscles responsive to water. Smart Materials and Structures 30 (7):75031. doi:10.1088/1361-665X/ac03c5.
  • Wang, Y., Z. Wang, Z. Lu, M. J. de Andrade, S. Fang, Z. Zhang, J. Wu, and R. H. Baughman. 2021. Humidity-and water-responsive torsional and contractile lotus fiber yarn artificial muscles. ACS Applied Materials & Interfaces 13 (5):6642–49. doi:10.1021/acsami.0c20456.
  • Xiong, J., J. Chen, and P. S. Lee. 2021. Functional fibers and fabrics for soft robotics, wearables, and human–robot interface. Advanced Materials 33:2002640. doi:10.1002/adma.202002640.
  • Yang, X., W. Wang, and M. Miao. 2018. Moisture-responsive natural fiber coil-structured artificial muscles. ACS Applied Materials & Interfaces 10 (38):32256–64. doi:10.1021/acsami.8b12144.
  • Ye, X.L., L.Z. Liu, and H.J. Jin. 2016. Responsive nanoporous metals: Recoverable modulations on strength and shape by watering. Nanotechnology 27 (32):325501. doi:10.1088/0957-4484/27/32/325501.