765
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modeling the Thermal Performance of Anisotropic Heat Conduction Fabric with Different Structural Parameters

ORCID Icon, , , & ORCID Icon

References

  • Asayesh, A., M. Talaei, and M. Maroufi. 2018. The effect of weave pattern on the thermal properties of woven fabrics. International Journal of Clothing Science and Technology 30 (4):525–13. doi:10.1108/ijcst-10-2017-0163.
  • Bhatia, D., and S. K. Sinha. 2021. Geometrical modelling of herringbone twill fabric for prediction of thermal resistance using finite element method. Fibers and Polymers 22 (10):1–4. doi:10.1007/s12221-021-0774-7.
  • Bhattacharjee, D., and V. K. Kothari. 2009. Heat transfer through woven textiles. International Journal of Heat and Mass Transfer 52 (7–8):2155–60. doi:10.1016/j.ijheatmasstransfer.2008.09.035.
  • Blundell, S. A., and K. M. Blundell. 2010. Concepts in thermal physics. 2nd ed. Oxford University Press. Bibliographies:London.
  • Chidambaram, P., R. Govind, and K. C. Venkataraman. 2011. The effect of loop length and yarn linear density on the thermal properties of bamboo knitted fabric. AUTEX Research Journal 11 (4):102–05. doi:10.1177/0040517511414972.
  • Cimilli, S., F. B. U. Nergis, and C. Candan. 2008. Modeling of heat transfer measurement unit for cotton plain knitted fabric using a finite element method. Textile Research Journal 78 (1):53–59. doi:10.1177/0040517507082186.
  • Eucken, A. 1940. Allgemeine Gesetzmäßigkeiten für das Wärmeleitvermögen verschiedener Stoffarten und Aggregatzustände. Forschung auf dem Gebiet des Ingenieurwesens A 11 (1):6–20. doi:10.1007/BF02584103.
  • Ibrahim, N. A., T. F. Khalifa, M. B. El-Hossamy, and T. M. Tawfik. 2010. Effect of knit structure and finishing treatments on functional and comfort properties of cotton knitted fabrics. Journal of Industrial Textiles 40 (1):49–64. doi:10.1177/1528083709357975.
  • Karaca, E., N. Kahraman, S. Omeroglu, and B. Becerir. 2012. Effects of fiber cross sectional shape and weave pattern on thermal comfort properties of polyester woven fabrics. Fibres & Textiles in Eastern Europe 92 (3):67–72. doi:10.1007/s10692-012-9401-0.
  • Lin, H., X. Zeng, M. Sherburn, A. C. Long, and M. J. Clifford. 2012. Automated geometric modelling of textile structures. Textile Research Journal 82 (16):1689–702. doi:10.1177/0040517511418562.
  • Lizák, P., J. Legerská, and S. C. Mojumdar. 2013. Influence of knitted structures on heat transfer. Journal of Thermal Analysis and Calorimetry 112 (2):1089–94. doi:10.1007/s10973-013-3104-5.
  • Lizák, P., and S. C. Mojumdar. 2014. Influence of the material structure on the thermal conductivity of the clothing textiles. Journal of Thermal Analysis and Calorimetry 119 (2):865–69. doi:10.1007/s10973-014-4112-9.
  • Luo, M., B. Cao, W. Ji, Q. Ouyang, B. Lin, and Y. Zhu. 2016. The underlying linkage between personal control and thermal comfort: Psychological or physical effects? Energy and Buildings 111:56–63. doi:10.1016/j.enbuild.2015.11.004.
  • Mansoor, T., L. Hes, V. Bajzik, and M. Tayyab Noman. 2020. Novel method on thermal resistance prediction and thermo-physiological comfort of socks in a wet state. Textile Research Journal 90 (17–18):1987–2006. doi:10.1177/0040517520902540.
  • Matusiak, M. 2010. Thermal comfort index as a method of assessing the thermal comfort of textile materials. Fibres & Textiles in Eastern Europe 79 (2):45–50.
  • Matusiak, M., and K. Sikorski. 2011. Influence of the structure of woven fabrics on their thermal insulation properties. Fibres & Textiles in Eastern Europe 88 (5):46–53.
  • Maxwell, J. C. 1954. A treatise on electricity and magnetism. 3rd ed. New York: Dover Publications Inc.
  • Morton, W. E., and J. W. S. Hearle. 2008. Physical properties of textile fibres. Fourth Edition. 4th ed. Woodhead Publishing:Cambridge.
  • Necati Özişik, M., H. R. B. Orlande, M. J. Colaço, and R. M. Cotta. 2017. Finite difference methods in heat transfer: Second Edition. 2nd ed. CRC Press:Boca Raton.
  • Nicol, F., M. Humphreys, and S. Roaf. 2012. Adaptive thermal comfort: Principles and practice. 1st ed. Routledge press:London and New York.
  • Parsons, K. 2014. Human thermal environments: The effects of hot, moderate, and cold environments on human health, comfort, and performance. 3rd ed. CRC Press:London.
  • Penide-Fernandez, R., and F. Sansoz. 2019. Anisotropic thermal conductivity under compression in two-dimensional woven ceramic fibers for flexible thermal protection systems. International Journal of Heat and Mass Transfer 145. doi:10.1016/j.ijheatmasstransfer.2019.118721.
  • Raeisian, L., Z. Mansoori, R. Hosseini-Abardeh, and R. Bagherzadeh. 2013. An investigation in structural parameters of needle-punched nonwoven fabrics on their thermal insulation property. Fibers and Polymers 14 (10):1748–53. doi:10.1007/s12221-013-1748-1.
  • Siddiqui, M. O. R., and D. Sun. 2014. Automated model generation of knitted fabric for thermal conductivity prediction using finite element analysis and its applications in composites. Journal of Industrial Textiles 45 (5):1038–61. doi:10.1177/1528083714551440.
  • Siddiqui, M. O. R., and D. Sun. 2017. Thermal analysis of conventional and performance plain woven fabrics by finite element method. Journal of Industrial Textiles 48 (4):685–712. doi:10.1177/1528083717736104.
  • Wang, W. T., and G. Z. Wang. 2005. Bézier curves with shape parameter. Journal of Zhejiang University-SCIENCE A 6 (6):497–501. doi:10.1631/jzus.2005.A0497.
  • Yang, S. M., and W. S. Tao. 2006. Heat Transfer. 4th ed. Higher Education Press:Beijin.
  • Zhang, Q., Z. Zheng, K. Mao, W. Zhi, L. Luo, and X. Pei. 2019. Effects of structural parameters on the thermal insulation properties of coated carbon fiber fabrics. Textile Research Journal 90 (13–14):1549–57. doi:10.1177/0040517519896759.
  • Zheng, Z., H. Wang, X. Zhao, and N. Zhang. 2017. Simulation of the effects of structural parameters of glass fiber fabric on the thermal insulation property. Textile Research Journal 88 (17):1954–64. doi:10.1177/0040517517715081.
  • Zheng, Z., X. Zhao, C. Wang, and X. Sun. 2014. Investigation of automated geometry modeling process of woven fabrics based on the yarn structures. The Journal of the Textile Institute 106 (9):925–33. doi:10.1080/00405000.2014.952966.
  • Zhu, H., H. Wang, Z. Liu, D. Li, G. Kou, and C. Li. 2018. Experimental study on the human thermal comfort based on the heart rate variability (HRV) analysis under different environments. The Science of the Total Environment 616-617:1124. doi:10.1016/j.scitotenv.2017.10.208.