1,150
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Biomass-Based Anion Exchange Membranes Using Poly (Ionic Liquid) Filled Bacterial Cellulose with Superior Ionic Conductivity and Significantly Improved Strength

, , , , , & show all

References

  • An, L., and T. S. Zhao. 2017. Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production. Journal of Power Sources 341:199–18. doi:10.1016/j.jpowsour.2016.11.117.
  • Bae, S., and M. Shoda. 2004. Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnology Progress 20 (5):1366–71. doi:10.1021/bp0498490.
  • Cao, D., F. Yang, W. Sheng, Y. Zhou, X. Zhou, Y. Lu, F. Nie, N. Li, L. Pan, and Y. Li. 2022. Polynorbornene-based anion exchange membranes with hydrophobic large steric hindrance arylene substituent. Journal of Membrane Science 641:119938. doi:10.1016/j.memsci.2021.119938.
  • Castro, C., R. Zuluaga, J. L. Putaux, G. Caro, I. Mondragon, and P. Gañán. 2011. Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydrate Polymers 84 (1):96–102. doi:10.1016/j.carbpol.2010.10.072.
  • Chang, Y., Y. Qin, Y. Yin, J. Zhang, and X. Li. 2018. Humidification strategy for polymer electrolyte membrane fuel cells–a review. Applied Energy 230:643–62. doi:10.1016/j.apenergy.2018.08.125.
  • Dai, L., J. Nan, X. Tu, L. He, B. Wei, C. Xu, and J. Zhang. 2019. Improved thermostability and cytocompatibility of bacterial cellulose/collagen composite by collagen fibrillogenesis. Cellulose 26 (11):6713–24. doi:10.1007/s10570-019-02530-w.
  • Dekel, D. R. 2018. Review of cell performance in anion exchange membrane fuel cells. Journal of Power Sources 375:158–69. doi:10.1016/j.jpowsour.2017.07.117.
  • Deng, H., D. Jiao, M. Zu, J. Chen, K. Jiao, and X. Huang. 2015. Modeling of passive alkaline membrane direct methanol fuel cell. Electrochimica acta 154:430–46. doi:10.1016/j.electacta.2014.12.044.
  • Dong, X. W., J. B. Zhuang, N. B. Huang, C. H. Liang, L. S. Xu, W. Li, S. C. Zhang, and M. Sun. 2015. Development of anion-exchange membrane for anion-exchange membrane fuel cells. Materials Research Innovations 19(suppl.6): S6-38-S6–41.10.1179/1432891715Z.0000000001442
  • Du, X., H. Zhang, Y. Yuan, and Z. Wang. 2021. Semi-interpenetrating network anion exchange membranes based on quaternized polyvinyl alcohol/poly(diallyldimethylammonium chloride). Green Energy & Environment 6 (5):743–50. doi:10.1016/j.gee.2020.06.015.
  • Evans, C. M., G. E. Sanoja, B. C. Popere, and R. A. Segalman. 2016. Anhydrous proton transport in polymerized ionic liquid block copolymers: Roles of block length, ionic content, and confinement. Macromolecules 49 (1):395–404. doi:10.1021/acs.macromol.5b02202.
  • García-Cruz, L., C. Casado-Coterillo, J. Iniesta, V. Montiel, and Á. Irabien. 2016. Chitosan: Poly (vinyl) alcohol composite alkaline membrane incorporating organic ionomers and layered silicate materials into a PEM electrochemical reactor. Journal of Membrane Science 498:395–407. doi:10.1016/j.memsci.2015.08.040.
  • Gong, C., S. Zhao, W. C. Tsen, F. Hu, F. Zhang, B. Zhang, H. Liu, G. Zheng, C. Qin, and S. Wen. 2019. Hierarchical layered double hydroxide coated carbon nanotube modified quaternized chitosan/polyvinyl alcohol for alkaline direct methanol fuel cells. Journal of Power Sources 441:227176. doi:10.1016/j.jpowsour.2019.227176.
  • Hoarfrost, M. L., M. S. Tyagi, R. A. Segalman, and J. A. Reimer. 2012. Effect of confinement on proton transport mechanisms in block copolymer/ionic liquid membranes. Macromolecules 45 (7):3112–20. doi:10.1021/ma202741g.
  • Lee, K. H., D. H. Cho, Y. M. Kim, S. J. Moon, J. G. Seong, D. W. Shin, J. Y. Sohn, J. F. Kim, and Y. M. Lee. 2017. Highly conductive and durable poly (arylene ether sulfone) anion exchange membrane with end-group cross-linking. Energy & Environmental Science 10 (1):275–85. doi:10.1039/C6EE03079C.
  • Lin, H. L., T. L. Yu, L. N. Huang, L. C. Chen, K. S. Shen, and G. B. Jung. 2005. Nafion/PTFE composite membranes for direct methanol fuel cell applications. Journal of Power Sources 150:11–19. doi:10.1016/j.jpowsour.2005.02.016.
  • Liu, G., W. C. Tsen, S. C. Jang, F. Hu, F. Zhong, B. Zhang, J. Wang, H. Liu, G. Wang, S. Wen, et al. 2020. Composite membranes from quaternized chitosan reinforced with surface-functionalized PVDF electrospun nanofibers for alkaline direct methanol fuel cells. Journal of Membrane Science 611:118242. doi:10.1016/j.memsci.2020.118242.
  • Li, J., S. Wang, F. Liu, X. Wang, H. Chen, T. Mao, and Z. Wang. 2019. Poly (aryl ether ketone)/polymeric ionic liquid with anisotropic swelling behavior for anion exchange membranes. Journal of Membrane Science 581:303–11. doi:10.1016/j.memsci.2019.03.025.
  • Ma, J., and Y. Sahai. 2013. Chitosan biopolymer for fuel cell applications. Carbohydrate Polymers 92 (2):955–75. doi:10.1016/j.carbpol.2012.10.015.
  • Mecerreyes, D. 2011. Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes. Progress in Polymer Science 36 (12):1629–48. doi:10.1016/j.progpolymsci.2011.05.007.
  • Nakamura, K., T. Saiwaki, K. Fukao, and T. Inoue. 2011. Viscoelastic behavior of the polymerized ionic liquid poly (1-ethyl-3-vinylimidazolium bis (trifluoromethanesulfonylimide)). Macromolecules 44 (19):7719–26. doi:10.1021/ma201611q.
  • Nasef, M. M., N. A. Zubir, A. F. Ismail, M. Khayet, K. Z. M. Dahlan, H. Saidi, R. Rohani, T. I. S. Ngah, and N. A. Sulaiman. 2006. PSSA pore-filled PVDF membranes by simultaneous electron beam irradiation: Preparation and transport characteristics of protons and methanol. Journal of Membrane Science 268 (1):96–108. doi:10.1016/j.memsci.2005.06.009.
  • Ni, J., J. Wang, S. Zhao, F. Zhong, T. Qu, F. Hu, H. Liu, C. Gong, and S. Wen. 2022. LDH nanosheets anchored on bacterial cellulose-based composite anion exchange membranes for significantly enhanced strength and ionic conductivity. Applied Clay Science 217:106391. doi:10.1016/j.clay.2021.106391.
  • Noh, S., J. Y. Jeon, S. Adhikari, Y. S. Kim, and C. Bae. 2019. Molecular engineering of hydroxide conducting polymers for anion exchange membranes in electrochemical energy conversion technology. Accounts of Chemical Research 52 (9):2745–55. doi:10.1021/acs.accounts.9b00355.
  • Nykaza, J. R., R. Benjamin, K. M. Meek, and Y. A. Elabd. 2016. Polymerized ionic liquid diblock copolymer as an ionomer and anion exchange membrane for alkaline fuel cells. Chemical Engineering Science 154:119–27. doi:10.1016/j.ces.2016.05.041.
  • Omasta, T. J., L. Wang, X. Peng, C. A. Lewis, J. R. Varcoe, and W. E. Mustain. 2018. Importance of balancing membrane and electrode water in anion exchange membrane fuel cells. Journal of Power Sources 375:205–13. doi:10.1016/j.jpowsour.2017.05.006.
  • Ouadah, A., H. Xu, T. Luo, S. Gao, X. Wang, Z. Fang, and C. Zhu. 2017. A series of poly (butylimidazolium) ionic liquid functionalized copolymers for anion exchange membranes. Journal of Power Sources 371:77–85. doi:10.1016/j.jpowsour.2017.10.038.
  • Pan, Z. F., R. Chen, L. An, and Y. S. Li. 2017. Alkaline anion exchange membrane fuel cells for cogeneration of electricity and valuable chemicals. Journal of Power Sources 365:430–45. doi:10.1016/j.jpowsour.2017.09.013.
  • Peckham, T. J., and S. Holdcroft. 2010. Structure-morphology-property relationships of non-perfluorinated proton-conducting membranes. Advanced Materials 22 (42):4667–90. doi:10.1002/adma.201001164.
  • Qian, W., J. Texter, and F. Yan. 2017. Frontiers in poly (ionic liquid) s: Syntheses and applications. Chemical Society Reviews 46 (4):1124–59. doi:10.1039/C6CS00620E.
  • Sailaja, G. S., P. Zhang, G. M. Anilkumar, and T. Yamaguchi. 2015. Aniosotropically organized LDH on PVDF: A geometrically templated electrospun substrate for advanced anion conducting membranes. ACS Applied Materials & Interfaces 7 (12):6397–401. doi:10.1021/acsami.5b00532.
  • Tang, W., Y. Yang, X. Liu, J. Dong, H. Li, and J. Yang. 2021. Long side-chain quaternary ammonium group functionalized polybenzimidazole based anion exchange membranes and their applications. Electrochimica acta 391:138919. doi:10.1016/j.electacta.2021.138919.
  • Varcoe, J. R., and R. C. Slade. 2005. Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5 (2):187–200. doi:10.1002/fuce.200400045.
  • Vijayakumar, V., T. Y. Son, H. J. Kim, and S. Y. Nam. 2019. A facile approach to fabricate poly (2, 6-dimethyl-1, 4-phenylene oxide) based anion exchange membranes with extended alkaline stability and ion conductivity for fuel cell applications. Journal of Membrane Science 591:117314. doi:10.1016/j.memsci.2019.117314.
  • Vilela, C., N. Sousa, R. J. Pinto, A. J. Silvestre, F. M. Figueiredo, and C. S. Freire. 2017. Exploiting poly(ionic liquids) and nanocellulose for the development of bio-based anion-exchange membranes. Biomass & bioenergy 100:116–25. doi:10.1016/j.biombioe.2017.03.016.
  • Wang, Q., L. Huang, J. Zheng, Q. Zhang, G. Qin, S. Li, and S. Zhang. 2022. Design, synthesis and characterization of anion exchange membranes containing guanidinium salts with ultrahigh dimensional stability. Journal of Membrane Science 643:120008. doi:10.1016/j.memsci.2021.120008.
  • Wong, C. Y., W. Y. Wong, K. S. Loh, W. R. W. Daud, K. L. Lim, M. Khalid, and R. Walvekar. 2020. Development of poly (vinyl alcohol)-based polymers as proton exchange membranes and challenges in fuel cell application: A review. Polymer Reviews 60 (1):171–202. doi:10.1080/15583724.2019.1641514.
  • Wu, H., X. Guo, L. Gao, L. Gao, T. Zhou, Z. Niu, X. Dong, Y. Zhan, Z. Li, F. F. Hong, et al. 2023. Structural-enhanced bacterial cellulose based alkaline exchange membranes for highly selective CO2 electrochemical reduction and excellent conductive performance in flexible zinc-air batteries. Chemical Engineering Journal 454:139807. doi:10.1016/j.cej.2022.139807.
  • Wu, H., Y. Zhang, W. Yuan, Y. Zhao, S. Luo, X. Yuan, and L. Cheng. 2018. Highly flexible, foldable and stretchable Ni–Co layered double hydroxide/polyaniline/bacterial cellulose electrodes for high-performance all-solid-state supercapacitors. Journal of Materials Chemistry A 6 (34):16617–26. doi:10.1039/C8TA05673K.
  • Xie, F., Z. Shao, X. Gao, J. Hao, W. Song, H. Yu, and B. Yi. 2019. Facile preparation of porefilled membranes based on poly (ionic liquid) with quaternary ammonium and tertiary amine head groups for AEMFCs. Solid State Ionics 338:58–65. doi:10.1016/j.ssi.2019.04.028.
  • Xiong, Y., Q. L. Liu, Q. G. Zhang, and A. M. Zhu. 2008. Synthesis and characterization of cross-linked quaternized poly (vinyl alcohol)/chitosan composite anion exchange membranes for fuel cells. Journal of Power Sources 183 (2):447–53. doi:10.1016/j.jpowsour.2008.06.004.
  • Xu, Z., L. Wan, Y. Liao, P. Wang, K. Liu, and B. Wang. 2021. Anisotropic anion exchange membranes with extremely high water uptake for water electrolysis and fuel cells. Journal of Materials Chemistry A 9 (41):23485–96. doi:10.1039/D1TA06579C.
  • Yamaguchi, T., F. Miyata, and S. I. Nakao. 2003. Polymer electrolyte membranes with a pore-filling structure for a direct methanol fuel cell. Advanced Materials 15 (14):1198–1201. doi:10.1002/adma.200304926.
  • You, W., K. J. Noonan, and G. W. Coates. 2020. Alkaline-stable anion exchange membranes: A review of synthetic approaches. Progress in Polymer Science 100:101177. doi:10.1016/j.progpolymsci.2019.101177.
  • Zhang, X., C. Fan, N. Yao, P. Zhang, T. Hong, C. Xu, and J. Cheng. 2018. Quaternary Ti3C2Tx enhanced ionic conduction in quaternized polysulfone membrane for alkaline anion exchange membrane fuel cells. Journal of Membrane Science 563:882–7. doi:10.1016/j.memsci.2018.06.059.
  • Zhang, F., H. Zhang, J. Ren, and C. Qu. 2010. PTFE based composite anion exchange membranes: Thermally induced in situ polymerization and direct hydrazine hydrate fuel cell application. Journal of Materials Chemistry 20 (37):8139–46. doi:10.1039/c0jm01311k.
  • Zhao, Y., H. Yu, D. Xing, W. Lu, Z. Shao, and B. Yi. 2012. Preparation and characterization of PTFE based composite anion exchange membranes for alkaline fuel cells. Journal of Membrane Science 421:311–17. doi:10.1016/j.memsci.2012.07.034.
  • Zou, Q., X. Guo, L. Gao, F. Hong, and J. Qiao. 2021. Fabrication of bacterial cellulose membrane-based alkaline-exchange membrane for application in electrochemical reduction of CO2. Separation and Purification Technology 272:118910. doi:10.1016/j.seppur.2021.118910.