753
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of the Effect of Process Parameters on Fabrication of Nanocrystalline Cellulose from Crotalaria Juncea

, ORCID Icon &

References

  • Alves, H., W. Pires, F. Neto, N. Oliveira, and D. Pasquini. 2013. Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Industrial Crops & Products 44:427–20. Elsevier B.V. doi:10.1016/j.indcrop.2012.10.014.
  • Baksi, S., S. Saha, C. Birgen, U. Sarkar, H. A. Preisig, S. Markussen, B. Wittgens, and A. Wentzel. 2019. Valorization of lignocellulosic waste (crotalaria juncea) using alkaline peroxide pretreatment under different process conditions: an optimization study on separation of lignin, cellulose, and hemicellulose. Journal of Natural Fibers 16 (5):662–76. Taylor and Francis Inc. doi:10.1080/15440478.2018.1431998.
  • Beck-Candanedo, S., M. Roman, and D. G. Gray. 2005. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6 (2):1048–54. doi:10.1021/bm049300p.
  • Beck, S., M. Méthot, and J. Bouchard. 2015. General procedure for determining cellulose nanocrystal sulfate half-ester content by conductometric titration. Cellulose 22:101–16. doi:10.1007/s10570-014-0513-y.
  • Chen, Y., J. Zhu, H. -Y. Yu, and Y. Li. 2020. Fabricating robust soft-hard network of self-healable polyvinyl alcohol composite films with functionalized cellulose nanocrystals. Composites Science and Technology 194 (March):108165. Elsevier Ltd. doi:10.1016/j.compscitech.2020.108165.
  • Cherian, B. M., A. L. Leão, S. F. I. de Souza, S. Thomas, L. A. Pothan, and M. Kottaisamy. 2010. Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate Polymers 81 (3):720–25. Elsevier. doi:10.1016/J.CARBPOL.2010.03.046.
  • De Melo, E. M., J. H. Clark, and A. S. Matharu. 2017. The Hy-MASS concept: hydrothermal microwave assisted selective scissoring of cellulose for: in situ production of (meso)porous nanocellulose fibrils and crystals. Green Chemistry 19 (14):3408–17. Royal Society of Chemistry. doi:10.1039/c7gc01378g.
  • Dhali, K., M. Ghasemlou, F. Daver, P. Cass, and B. Adhikari. 2021. Science of the total environment a review of nanocellulose as a new material towards environmental sustainability. The Science of the Total Environment 775:145871. Elsevier B.V. doi:10.1016/j.scitotenv.2021.145871.
  • Dutta, R., U. Sarkar, and A. Mukherjee. 2017. Study of transient behaviour of modified soxhlet apparatus for extraction of a bio-fuel oil from crotalaria juncea seed. International Journal of Green Energy 14 (8):675–86. Taylor & Francis. doi:10.1080/15435075.2017.1318283.
  • Espinosa, S., T. Kuhnt, E. J. Foster, and C. Weder. 2013. Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis. Biomacromolecules 14 (4):1223–30. doi:10.1021/bm400219u.
  • Feng, J., A. R. Esker, and M. Roman. 2010. Acid-catalyzed and solvolytic desulfation of H2SO 4-Hydrolyzed cellulose nanocrystals. Langmuir 26 (23):17919–25. doi:10.1021/la1028405.
  • Feng, X., and D. Wang. 2015. Chapter 2 - analysis of lignocellulosic biomass using infrared methodology. In Pretreatment of Biomass, ed. A. Pandey, S. Negi, P. Binod, and C. Larroche, 7–25. Amsterdam: Elsevier. doi:10.1016/B978-0-12-800080-9.00002-5.
  • Gabriel, T., A. Belete, G. Hause, R. H. H. Neubert, and T. Gebre-Mariam. 2021. Isolation and characterization of cellulose nanocrystals from different lignocellulosic residues: A comparative study. Journal of Polymers and the Environment 29 (9):2964–77. Springer US. doi:10.1007/s10924-021-02089-3.
  • Hafemann, E., R. Battisti, C. Marangoni, and R. A. F. Machado. 2019. Valorization of royal palm tree agroindustrial waste by isolating cellulose nanocrystals. Carbohydrate Polymers 218 (May):188–98. Elsevier. doi:10.1016/j.carbpol.2019.04.086.
  • Hasan, S., I. Filpponen, S. P. Clarke, and D. S. D. F. Brougham Argyropoulos. 2011. Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. Journal of Materials Science 46 (22):7344–55. doi:10.1007/s10853-011-5696-0.
  • He, Y., H. Li, X. Fei, and L. Peng. 2021. Carboxymethyl cellulose/cellulose nanocrystals immobilized silver nanoparticles as an effective coating to improve barrier and antibacterial properties of paper for food packaging applications. Carbohydrate Polymers 252 (August 2020):117156. Elsevier Ltd. doi:10.1016/j.carbpol.2020.117156.
  • Huang, S., X. Liu, C. Chang, and Y. Wang. 2020. Recent developments and prospective food-related applications of cellulose nanocrystals: A review. Cellulose 27 (6):2991–3011. Springer Netherlands. doi:10.1007/s10570-020-02984-3.
  • Johar, N., I. Ahmad, and A. Dufresne. 2012. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops & Products 37 (1):93–99. Elsevier B.V. doi:10.1016/j.indcrop.2011.12.016.
  • Jozala, A. F., L. Celia De Lencastre-Novaes, A. Moreni Lopes, V. De Carvalho Santos-Ebinuma, P. Gava Mazzola, and A. Pessoa-Jr. 2016. Bacterial nanocellulose production and application: A 10-year overview. Applied Microbiology and Biotechnology 100 (5):2063–72. doi:10.1007/s00253-015-7243-4.
  • Klemm, D., D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, and A. Dorris. 2011. Nanocelluloses: A new family of nature-based materials angewandte. Angewandte Chemie International Edition 50 (24):5438–66. doi:10.1002/anie.201001273.
  • Kusmono, R. F. L., M. Waziz Wildan, and M. Noer Ilman. 2020. Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis. Heliyon 6 (11):e05486. Elsevier Ltd. doi:10.1016/j.heliyon.2020.e05486.
  • Li, F., P. Biagioni, M. Bollani, A. Maccagnan, and L. Piergiovanni. 2013. Multi-functional coating of cellulose nanocrystals for flexible packaging applications. Cellulose 20 (5):2491–504. doi:10.1007/s10570-013-0015-3.
  • Ling, Z., J. Vincent Edwards, Z. Guo, N. T. Prevost, S. Nam, Q. Wu, A. D. French, and F. Xu. 2019. Structural variations of cotton cellulose nanocrystals from deep eutectic solvent treatment: micro and nano scale. Cellulose 26 (2):861–76. Springer Netherlands. doi:10.1007/s10570-018-2092-9.
  • Long, W., H. Ouyang, C. Zhou, W. Wan, S. Yu, K. Qian, M. Liu, X. Zhang, Y. Feng, and Y. Wei. 2021. Simultaneous surface functionalization and drug loading: a novel method for fabrication of cellulose nanocrystals-based ph responsive drug delivery system. International Journal of Biological Macromolecules 182 (June):2066–75. Elsevier B.V. doi:10.1016/j.ijbiomac.2021.05.193.
  • Mandal, A., and D. Chakrabarty. 2011. Isolation of nanocellulose from waste Sugarcane Bagasse (SCB) and its characterization. Carbohydrate Polymers 86 (3):1291–99. Elsevier. doi:10.1016/J.CARBPOL.2011.06.030.
  • Marcos, R., W. Pires, F. Neto, H. Alves, D. Ferreira, N. Oliveira, and D. Pasquini. 2013. Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Industrial Crops & Products 50:707–14. Elsevier B.V. doi:10.1016/j.indcrop.2013.08.049.
  • Mekonnen, T. H., T. Haile, and M. Ly. 2021. Applied surface science hydrophobic functionalization of cellulose nanocrystals for enhanced corrosion resistance of polyurethane nanocomposite coatings. Applied Surface Science 540 (1):148299. Elsevier B.V. doi:10.1016/j.apsusc.2020.148299.
  • Mendoza, D. J., M. Maliha, V. S. Raghuwanshi, C. Browne, L. M. M. Mouterde, G. P. Simon, F. Allais, and G. Garnier. 2021. Diethyl sinapate-grafted cellulose nanocrystals as nature-inspired UV fi lters in cosmetic formulations. Materials Today Bio 12 (August):100126. Elsevier Ltd. doi:10.1016/j.mtbio.2021.100126.
  • Min, Y., Y. Suk, T. Kim, K. Yang, K. Nam, D. Choe, and Y. Hoon. 2020. Cationic cellulose nanocrystals complexed with polymeric SiRNA for efficient anticancer drug delivery. Carbohydrate Polymers 247 (June):116684. Elsevier. doi:10.1016/j.carbpol.2020.116684.
  • Molnes, S. N., A. Mamonov, K. G. Paso, S. Strand, and K. Syverud. 2018. Investigation of a New Application for Cellulose Nanocrystals: A Study of the Enhanced Oil Recovery Potential by Use of a Green Additive. Cellulose 25 (4):2289–301. Springer Netherlands. doi:10.1007/s10570-018-1715-5.
  • Montanari, S., M. Roumani, L. Heux, and M. R. Vignon. 2005. Topochemistry of Carboxylated Cellulose Nanocrystals resulting fromTEMPO-mediated oxidation. Macromolecules 38 (5):1665–71. doi:10.1021/ma048396c.
  • Orrabalis, C., D. Rodríguez, L. G. Pampillo, C. Londoño-Calderón, M. Trinidad, and R. Martínez-García. 2019. Characterization of nanocellulose obtained from cereus forbesii (a South American Cactus). Materials Research 22 (6):1–10. doi:10.1590/1980-5373-MR-2019-0243.
  • Pandi, N., S. H. Sonawane, and K. Anand Kishore. 2021. Synthesis of Cellulose Nanocrystals (CNCs) from cotton using ultrasound- assisted acid hydrolysis. Ultrasonics - Sonochemistry 70 (May 2020):105353. Elsevier. doi:10.1016/j.ultsonch.2020.105353.
  • Parenti, A., G. Cappelli, W. Zegada-Lizarazu, C. Martín Sastre, M. Christou, A. Monti, and F. Ginaldi. 2021. SunnGro: A new crop model for the simulation of sunn hemp (Crotalaria Juncea L.) grown under alternative management practices. Biomass & bioenergy 146:105975. doi:10.1016/j.biombioe.2021.105975.
  • Pasquini, D., E. De Morais, A. Aprígio, M. Naceur, and A. Dufresne. 2010. Extraction of cellulose whiskers from cassava bagasse and their applications as reinforcing agent in natural rubber. Industrial Crops & Products 32 (3):486–90. Elsevier B.V. doi:10.1016/j.indcrop.2010.06.022.
  • Reza, M., Y. Boluk, and V. Bindiganavile. 2019. The effect of Cellulose Nanocrystal (CNC) particles on the porosity and strength development in oil well cement paste. Construction and Building Materials 205:456–62. Elsevier Ltd. doi:10.1016/j.conbuildmat.2019.01.073.
  • Sadhukhan, S., and U. Sarkar. 2016. Production of biodiesel from Crotalaria Juncea (Sunn-Hemp) oil using catalytic trans-esterification: process optimisation using a factorial and box – behnken design. Waste and Biomass Valorization 7 (2):343–55. Springer Netherlands. doi:10.1007/s12649-015-9454-4.
  • Saha, S., and R. Ghosh. 2019. Cellulose nanocrystals from lignocellulosic agro-waste: A comparative study on conventional and ultrasonic assisted preparation methods. Materials Today: Proceedings 11 (January):628–36. Elsevier. doi:10.1016/J.MATPR.2019.03.020.
  • Sain, M., and S. Panthapulakkal. 2006. Bioprocess preparation of wheat straw fibers and their characterization. Industrial Crops and Products 23 (1):1–8. doi:10.1016/j.indcrop.2005.01.006.
  • Saito, T., S. Kimura, Y. Nishiyama, and A. Isogai. 2007. Cellulose nanofibers prepared by tempo-mediated oxidation of native cellulose. Biomacromolecules 8:2485–91. doi:10.1021/bm0703970.
  • Segal, L., J. J. Creely, A. E. M. Jr, and C. M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29 (10):786–94. doi:10.1177/004051755902901003.
  • Sengupta, S., and S. Debnath. 2018. Industrial crops & products development of Sunnhemp (Crotalaria Juncea) fi bre based unconventional fabric. Industrial Crops & Products 116 (October 2017):109–15. Elsevier. doi:10.1016/j.indcrop.2018.02.059.
  • Shaheen, T. I., and H. E. Emam. 2017. Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using acid hydrolysis Cellulose Nanocrystal (CNC) is a unique material obtained from naturally occurring. International Journal of Biological Macromolecules 107:1599–606. doi:10.1016/j.ijbiomac.2017.10.028.
  • Sinbuathong, N., and B. Sillapacharoenkul. 2020. Enhancement of biogas production from sunnhemp using alkaline pretreatment. International Journal of Hydrogen Energy 46 (6):4870–78. Elsevier Ltd. doi:10.1016/j.ijhydene.2020.04.058.
  • Smyth, M., A. García, E. J. F. Chris Rader, and J. Bras. 2017. Extraction and process analysis of high aspect ratio cellulose nanocrystals from corn (Zea Mays) agricultural residue. Industrial Crops & Products 108 (May):257–66. Elsevier. doi:10.1016/j.indcrop.2017.06.006.
  • Song, J., C. Chen, Z. Yang, Y. Kuang, T. Li, Y. Li, and H. Huang. 2018. Highly compressible, anisotropic aerogel with aligned cellulose nano fi bers. ACS Nano 12 (1):140–47. doi:10.1021/acsnano.7b04246.
  • Song, K., X. Zhu, W. Zhu, and X. Li. 2019. Preparation and characterization of cellulose nanocrystal extracted from calotropis procera biomass. Bioresources and Bioprocessing 6 (1):Springer Singapore. 10.1186/s40643-019-0279-z
  • Sudeshna, S., U. D. Hemraz, and Y. Boluk. 2020. The effects of high pressure and high temperature in semidilute aqueous cellulose nanocrystal suspensions. Biomacromolecules 21 (2):1031–35. doi:10.1021/acs.biomac.9b01130.
  • Sunasee, R., U. D. Hemraz, and K. Ckless. 2016. Cellulose nanocrystals: A versatile nanoplatform for emerging biomedical applications. Expert Opinion on Drug Delivery 13 (9):1243–56. Taylor & Francis. doi:10.1080/17425247.2016.1182491.
  • Szyma, M., M. Grzegorczyk-Frańczak, M. Szymańska-Chargot, and G. Łagód. 2019. Effect of eco-friendly cellulose nanocrystals on physical properties of cement mortars. Polymers 11 (12):11. doi:10.3390/polym11122088.
  • Thambiraj, S., and D. R. Shankaran. 2017. Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton. Applied Surface Science 412:405–16. doi:10.1016/j.apsusc.2017.03.272.
  • Wang, Z., Z. Yao, J. Zhou, and Y. Zhang. 2017. Reuse of waste cotton cloth for the extraction of cellulose. Carbohydrate Polymers 157:945–52. Elsevier Ltd. doi:10.1016/j.carbpol.2016.10.044.
  • Xing, L., G. Jin, W. Zhang, T. Dengyun, and H. Chuanshuang. 2018. Cellulose I and II nanocrystals produced by sulfuric acid hydrolysis of tetra pak cellulose I. Carbohydrate Polymers 192 (February):184–92. Elsevier. doi:10.1016/j.carbpol.2018.03.042.
  • Yin, S., I. Ahmad, M. Cairul, and I. Mohd. 2016. Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems Gelatin/CNC hydrogel gelatin hydrogel. Industrial Crops & Products 93:227–34. Elsevier B.V. doi:10.1016/j.indcrop.2015.11.082.
  • Yu, S., J. Sun, Y. Shi, Q. Wang, J. Wu, and J. Liu. 2021. Environmental science and ecotechnology nanocellulose from various biomass wastes: Its preparation and potential usages towards the high value-added products. Environmental Science and Ecotechnology 5:100077. Elsevier Ltd. doi:10.1016/j.ese.2020.100077.
  • Yu, H., C. Yan, X. Lei, Z. Qin, and J. Yao. 2014. Novel approach to extract thermally stable cellulose nanospheres with high yield. Materials Letters 131:12–15. Elsevier. doi:10.1016/j.matlet.2014.05.159.
  • Zakaria, M., N. Muhammad, A. Sarwono, M. V. K. Mohamad Azmi Bustam, and S. Rafiq. 2011. Preparation of cellulose nanocrystals using an ionic liquid. Journal of Polymers and the Environment 19 (3):726–31. doi:10.1007/s10924-011-0323-3.
  • Zhang, Z., B. Zhang, N. Grishkewich, R. Berry, and K. C. Tam. 2019. Cinnamate-functionalized cellulose nanocrystals as UV-shielding nanofillers in sunscreen and transparent polymer films. Advanced Sustainable Systems 3 (4):1800156. doi:10.1002/adsu.201800156.
  • Zhong-Yan, Q., Y. C. F. C. Guo-Lin Tong, and J.C. Zhou. 2011. Preparation of ultrasonic-assisted high carboxylate content cellulose nanocrystals by tempo oxidation. BioResources 6 (2):1136–46.