1,611
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Filtration Capacity and Radiation Cooling of Cellulose Aerogel Derived from Natural Regenerated Cellulose Fibers

, , &

References

  • Beluns, S., S. Gaidukovs, O. Platnieks, G. Gaidukova, I. Mierina, L. Grase, O. Starkova, P. Brazdausks, and V. Thakur. 2021. From wood and hemp biomass wastes to sustainable nanocellulose foams. Industrial Crops and Products 170:113780. doi:10.1016/j.indcrop.2021.113780.
  • Boukind, S., S. Sair, H. Ousaleh, S. Mansouri, M. Zahouily, Y. Abboudc, and A. Bouari. 2021. Ambient pressure drying as an advanced approach to the synthesis of silica aerogel composite for building thermal insulation. Journal of Natural Fibers 19 (15):1–10. doi:10.1080/15440478.2021.1993486.
  • Chen, Y., B. Dang, J. Fu, C. Wang, C. Li, Q. Sun, and H. Li. 2021a. Cellulose-based hybrid structural material for radiative cooling. Nano Letters 21:397–404. doi:10.1021/acs.nanolett.0c03738.
  • Chen, Y., L. Zhang, Y. Yang, B. Pang, W. Xu, G. Duan, S. Jiang, and K. Zhang. 2021b. Recent progress on nanocellulose aerogels: Preparation, modification, composite fabrication, applications. Advanced Materials 33 (11):2005569. doi:10.1002/adma.202005569.
  • Chen, Y., L. Zhou, L. Chen, G. Duan, C. Mei, C. Huang, J. Han, and S. Shao. 2019. Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport. Cellulose 26 (11):6653–67. doi:10.1007/s10570-019-02557-z.
  • Cui, Y., H. Gong, Y. Wang, D. Li, and H. Bai. 2018. A thermally insulating textile inspired by polar bear hair. Advanced Materials 30:1706807–15. doi:10.1002/adma.201706807.
  • De France, K. J., T. Hoare, and E. D. Cranston. 2017. Review of hydrogels and aerogels containing nanocellulose. Chemistry of Materials 29:4609–31. doi:10.1021/acs.chemmater.7b00531.
  • Fauziyah, M., W. Widiyastuti, R. Balgis, and H. Setyawan. 2019. Production of cellulose aerogels from coir fibers via an alkali–urea method for sorption applications. Cellulose 26 (18):9583–98. doi:10.1007/s10570-019-02753-x.
  • Gamage, S., D. Banerjee, M. Alam, T. Hallberg, C. Åkerlind, A. Sultana, R. Shanker, M. Berggren, X. Crispin, H. Kariis, et al. 2021. Reflective and transparent cellulose-based passive radiative coolers. Cellulose 28:9383–93. doi:10.1007/s10570-021-04112-1.
  • Gamage, S., E. S. H. Kang, C. Åkerlind, S. Sardar, J. Edberg, H. Kariis, T. Ederth, M. Berggren, and M. Jonsson. 2020. Transparent nanocellulose metamaterial enables controlled optical diffusion and radiative cooling. Journal of Materials Chemistry C 8 (34):11687–94. doi:10.1039/D0TC01226B.
  • Huang, C., K. Hu, and Z. Wei. 2016. Comparison of cell behavior on pva/pva-gelatin electrospun nanofibers with random and aligned configuration. Scientific Reports 6:37960–68. doi:10.1038/srep37960.
  • Huang, Z., C. Liu, X. Feng, M. Wu, Y. Tang, and B. Li. 2020. Effect of regeneration solvent on the characteristics of regenerated cellulose from lithium bromide trihydrate molten salt. Cellulose 27:9243–56. doi:10.1007/s10570-020-03440-y.
  • Kim, C., H. Youn, and H. Lee. 2015. Preparation of cross-linked cellulose nanofibril aerogel with water absorbency and shape recovery. Cellulose 22 (6):3715–24. doi:10.1007/s10570-015-0745-5.
  • Li, J., X. Tang, H. Zhang, X. Gao, S. Zhang, and T. Tan. 2022. Adsorption behavior of three-dimensional bio-adsorbent from maize stalk pith for methylene blue. Industrial Crops and Products 188:115717. doi:10.1016/j.indcrop.2022.115717.
  • Song, J., C. Chen, Z. Yang, Y. Kuang, T. Li, Y. Li, H. Huang, L. Kierzewski, B. Liu, S. He, et al. 2018. Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 12 (1):140–47. doi:10.1021/acsnano.7b04246.
  • Sun, B., M. Zhang, Q. Hou, R. Liu, T. Wu, and C. Si. 2016. Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers. Cellulose 23:439–50. doi:10.1007/s10570-015-0803-z.
  • Toivonen, M., A. Kaskela, O. Rojas, E. Kauppinen, and O. Ikkala. 2015. Ambient-dried cellulose nanofibril aerogel membranes with high tensile strength and their use for aerosol collection and templates for transparent, flexible devices. Advanced Functional Materials 25:6618–26. doi:10.1002/adfm.201502566.
  • Wan, C., Y. Jiao, S. Wei, L. Zhang, Y. Wu, and J. Li. 2019. Functional nanocomposites from sustainable regenerated cellulose aerogels: A review. Chemical Engineering Journal 359:459–75. doi:10.1016/j.cej.2018.11.115.
  • Zhao, Z., Z. Tang, and Y. Zhang. 2021. Discarded dates as a sustainable source to prepare porous carbon-aerogel with multiple energy storage functions. Industrial Crops and Products 170:113772–83. doi:10.1016/j.indcrop.2021.113772.
  • Zhu, G., Z. Chen, B. Wu, and N. Lin. 2019. Dual-enhancement effect of electrostatic adsorption and chemical crosslinking for nanocellulose-based aerogels. Industrial Crops and Products 139:111580–89. doi:10.1016/j.indcrop.2019.111580.