12,186
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Production and Characterization of Paper from Banana Stem Fiber: Optimization Using Box-behnken Design (BBD)

ORCID Icon, , , , &

References

  • Abdul Razab, M. K. A., R. S. Mohd Ghani, F. A. Mohd Zin, N. A. A. Nik Yusoff, and A. A. Mohamed Noor. 2021. Isolation and characterization of cellulose Nanofibrils from banana Pseudostem, oil palm Trunk, and Kenaf bast fibers using chemicals and high-intensity ultrasonication. Journal of Natural Fibers 19 (13):1–16. doi:10.1080/15440478.2021.1881021.
  • Basak, S., K. K. Samanta, S. K. Chattopadhyay, and R. Narkar. 2015. Thermally stable cellulosic paper made using banana pseudostem sap, a wasted by-product. Cellulose 22 (4):2767–76. doi:10.1007/s10570-015-0662-7.
  • Bhatnagar, R., G. Gupta, and S. Yadav. 2015. A review on composition and properties of banana fibers. International Journal of Scientific & Engineering Research 6 (5):49–52.
  • Call, M., C. Gray, and P. Jagger. 2019. Smallholder responses to climate anomalies in rural Uganda. World Development 115:132–44. doi:10.1016/j.worlddev.2018.11.009.
  • Chaker, H., N. Ameur, K. Saidi-Bendahou, M. Djennas, and S. Fourmentin. 2021. Modeling and Box-Behnken design optimization of photocatalytic parameters for efficient removal of dye by lanthanum-doped mesoporous TiO2. Journal of Environmental Chemical Engineering 9 (1):104584. doi:10.1016/j.jece.2020.104584.
  • d’Halluin, M., J. Rull-Barrull, G. Bretel, C. Labrugere, E. Grognec, and F. X. Felpin. 2017. Chemically modified cellulose filter paper for heavy metal remediation in water. ACS Sustainable Chemistry & Engineering 5 (2):1965–73. doi:10.1021/acssuschemeng.6b02768.
  • Fatrozi, S., L. Purwanti, S. K. Sari, M. N. Ariesta, and S. D. Marliyana. 2020. Properties of starch biofoam reinforced with microcrystalline cellulose from banana stem fiber. In AIP Conference Proceedings 2237 (1): 020054–62.
  • Fu, P., S. Hu, J. Xiang, P. Li, D. Huang, L. Jiang, J. Zhang, and J. Zhang. 2010. FTIR study of pyrolysis products evolving from typical agricultural residues. Journal of Analytical and Applied Pyrolysis 88 (2):117–23. doi:10.1016/j.jaap.2010.03.004.
  • Gumisiriza, R., J. F. Hawumba, M. Okure, and O. Hensel. 2017. Biomass waste-to-energy valorisation technologies: A review case for banana processing in Uganda. Biotechnology for Biofuels 10 (1):1–29. doi:10.1186/s13068-016-0689-5.
  • Hussain, I., and O. M. Tarar. 2014. Pulp and paper making by using waste banana stem. Journal of Modern Science and Technology 2 (2):36–40.
  • Jirukkakul, N. 2019. Physical properties of banana stem and leaf papers laminated with banana film. Walailak Journal of Science and Technology (WJST) 16 (10):753–63. doi:10.48048/wjst.2019.3471.
  • Jung, J., G. M. Raghavendra, D. Kim, and J. Seo. 2018. One-step synthesis of starch-silver nanoparticle solution and its application to antibacterial paper coating. International Journal of Biological Macromolecules 107:2285–90. doi:10.1016/j.ijbiomac.2017.10.108.
  • Karlsson, H. 2010. Strength properties of paper produced from softwood Kraft Pulp: Pulp mixture, reinforcement and sheet stratification. PhD dissertation, Karlstads universitet, n.d.
  • Khan, M. Z. H., M. A. R. Sarkar, F. I. Al Imam, M. Z. H. Khan, and R. O. Malinen. 2014. Paper making from banana pseudo-stem: Characterization and comparison. Journal of Natural Fibers 11 (3):199–211. doi:10.1080/15440478.2013.874962.
  • Liu, X., and T. B. X. 2011. Removal of inorganic constituents from pine barks and switchgrass. Fuel Processing Technology 92 (7):1273–79. doi:10.1016/j.fuproc.2011.01.016.
  • Lubwama, M., V. A. Yiga, and H. N. Lubwama. 2020. Effects and interactions of the agricultural waste residues and binder type on physical properties and calorific values of carbonized briquettes. Biomass Conversion and Biorefinery 12 (11):1–21. doi:10.1007/s13399-020-01001-8.
  • Lubwama, M., V. A. Yiga, F. Muhairwe, and J. Kihedu. 2020. Physical and combustion properties of agricultural residue bio-char bio-composite briquettes as sustainable domestic energy sources. Renewable Energy 148:1002–16. doi:10.1016/j.renene.2019.10.085.
  • Mahale, S., and A. S. Goswami-Giri. 2015. Environmental friendly approach in paper making using natural organic waste. Chem Sci Rev Lett 4:489–93.
  • Megra, M. B., R. K. Bachheti, M. G. Tadesse, and L. A. Worku. 2022. Evaluation of Pulp and Papermaking Properties of Melia azedarach. Forests 13 (2):263–76. doi:10.3390/f13020263.
  • Mehraz, L., and M. Nouri. 2020. Modification of silk fibers via β-cyclodextrin–empirical modeling and process optimization using response surface methodology. Journal of Natural Fibers 17 (8):1225–37. doi:10.1080/15440478.2018.1558154.
  • Menya, E., P. W. Olupot, H. Storz, M. Lubwama, Y. Kiros, and M. J. John. 2020. Optimization of pyrolysis conditions for char production from rice husks and its characterization as a precursor for production of activated carbon. Biomass Conversion and Biorefinery 10 (1):57–72. doi:10.1007/s13399-019-00399-0.
  • Mochane, M. J., T. C. Mokhena, T. H. Mokhothu, A. Mtibe, E. R. Sadiku, S. S. Ray, O. O. Daramola, and O. O. Daramola. 2019. Recent progress on natural fiber hybrid composites for advanced applications: A review. Express Polymer Letters 13 (2):159–98. doi:10.3144/expresspolymlett.2019.15.
  • Mohamad, N. A. N., and J. Jai. 2022. Response surface methodology for optimization of cellulose extraction from banana stem using NaOH-EDTA for pulp and papermaking. Heliyon 8 (3):9114–25. doi:10.1016/j.heliyon.2022.e09114.
  • Muñoz, P., V. Letelier, L. Muñoz, and M. A. Bustamante. 2020. Adobe bricks reinforced with paper & pulp wastes improving thermal and mechanical properties. Construction and Building Materials 254:119314–22. doi:10.1016/j.conbuildmat.2020.119314.
  • Omulo, G., N. Banadda, I. Kabenge, and J. Seay. 2019. Optimizing slow pyrolysis of banana peels wastes using response surface methodology. Environmental Engineering Research 24 (2):354–361. doi:10.4491/eer.2018.269.
  • Padam, B. S., H. S. Tin, F. Y. Chye, and M. I. Abdullah. 2014. Banana by-products: An under-utilized renewable food biomass with great potential. Journal of Food Science and Technology 51 (12):3545. doi:10.1007/s13197-012-0861-2.
  • Pavani, S., Y. M. Rao, and Y. S. Kumar. 2016. Use of Box-Behnken Experimental design for Optimization of process Variables in Iontophoretic delivery of Repaglinide. JYP 8 (4):350–355. doi:10.5530/jyp.2016.4.10.
  • Purnama, R. C., and A. Primadiamanti. 2021. Phytochemical screening and spectrum profile of functional group from Banana (Musa paradisiaca L.) stem waste extract using Fourier-transform Infrared (FTIR) Spectroscopy method. Journal of Physics: Conference Series, Indonesia, 2020 October 20–22, 1882 (1):12106–16.
  • Ramdhonee, A., and P. Jeetah. 2017. Production of wrapping paper from banana fibres. Journal of Environmental Chemical Engineering 5 (5):4298–306. doi:10.1016/j.jece.2017.08.011.
  • Rashid, M., A. K. Das, M. Shams, and S. K. Biswas. 2014. Physical and mechanical properties of medium density fiber board (MDF) fabricated from banana plant (Musa sapientum) stem and midrib. Journal of the Indian Academy of Wood Science 11 (1):1–4. doi:10.1007/s13196-014-0109-z.
  • Rietveld, A. M., S. Mpiira, W. Jogo, C. Staver, and E. B. Karamura. 2013. The beer banana value chain in central Uganda. Banana systems in the Humid highlands of Sub-Saharan Africa. Enhancing Resilience and Productivity 2015:191–201.
  • Sakare, P., A. K. Bharimalla, J. Dhakane-Lad, and P. G. Patil. 2021. Development of greaseproof paper from banana pseudostem fiber for packaging of butter. Journal of Natural Fibers 18 (12):1974–82.
  • Samson, S., M. Basri, R. A. Karjiban, E. A. Malek, and E. Abdul Malek. 2016. Design and development of a nanoemulsion system containing copper peptide by D-optimal mixture design and evaluation of its physicochemical properties. RSC Advances 6 (22):17845–56. doi:10.1039/C5RA24379C.
  • Senthilkumar, K., I. Siva, N. Rajini, J. W. Jappes, and S. Siengchin. 2018. Mechanical characteristics of tri-layer eco-friendly polymer composites for interior parts of aerospace application. In Sustainable composites for aerospace applications, eds. J. Mohammad and T. Mohamed, 35–53. United Kingdom: Woodhead Publishing.
  • Tessema, T. Y., M. M. Shute, M. A. Yalew, T. G. Hishe, and E. E. Shumey. 2019. Briquetting of sesame stalk using waste paper as binding agent to replace petcoke. International Journal of Advanced Science and Engineering 6 (2):1382–89. doi:10.29294/IJASE.6.2.2019.1382-1389.
  • Tharazi, I., A. B. Sulong, N. Muhamad, N. F. Tholibon, D. Ismail, Z. Razak, M. K. F. M. Radzi, and Z. Razak. 2017. Optimization of hot press parameters on tensile strength for unidirectional long kenaf fiber reinforced polylactic-acid composite. Procedia Engineering 184:478–85. doi:10.1016/j.proeng.2017.04.150.
  • Tibolla, H., F. M. Pelissari, J. T. Martins, A. A. Vicente, and F. C. Menegalli. 2018. Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: Characterization and cytotoxicity assessment. Food Hydrocolloids 75:192–201. doi:10.1016/j.foodhyd.2017.08.027.
  • Tumutegyereize, P. 2011. Optimization of biogas production from banana peels: Effect of particle size on methane yield. African Journal of Biotechnology 10 (79):18243–51. doi:10.5897/AJB11.2442.
  • Uganda wood asset and forest resources accounts. 2020: Uganda National Bureau of Statistics (UBOS).
  • Wen, Q., F. Guo, F. Yang, and Z. Guo. 2017. Green fabrication of coloured superhydrophobic paper from native cotton cellulose. Journal of Colloid and Interface Science 497:284–89. doi:10.1016/j.jcis.2017.03.036.
  • Yiga, V. A., M. Lubwama, and P. W. Olupot. 2021a. Application of response surface methodology for optimizing tensile strength of rice husk fiber-reinforced polylactic acid composites. Process Pap 3:1–8.
  • Yiga, V. A., M. Lubwama, and P. W. Olupot. 2021b. Effect of alkaline surface modification and carbonization on biochemical properties of rice and coffee husks for use in briquettes and fiber-reinforced plastics. Journal of Natural Fibers 18 (4):620–29. doi:10.1080/15440478.2019.1642824.
  • Yiga, V. A., M. Lubwama, S. Pagel, P. W. Olupot, J. Benz, and C. Bonten. 2021a. Optimization of tensile strength of PLA/clay/rice husk composites using Box-Behnken design. Biomass Conversion and Biorefinery 1–27. doi:10.1007/s13399-021-01971-3.
  • Yiga, V. A., M. Lubwama, S. Pagel, P. W. Olupot, J. Benz, and C. Bonten. 2021b. Optimization of tensile strength of PLA/clay/rice husk composites using Box-Behnken design. Biomass Conversion and Biorefinery 1–27. doi:10.1007/s13399-021-01971-3.
  • Zhao, L., Q. Li, X. Xu, W. Kong, X. Li, Y. Su, Q. Yue, and B. Gao. 2016. A novel enteromorpha based hydrogel optimized with Box–Behnken response surface method: Synthesis, characterization and swelling behaviors. Chemical Engineering Journal 287:537–44. doi:10.1016/j.cej.2015.11.085.