1,345
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Effect of ultrafine grinding and ultrasonication duration on the performance of polyvinyl alcohol (PVA) agave gigantea cellulose micro fiber (CMF) bio-composite film

ORCID Icon, , ORCID Icon, ORCID Icon, , , , , , ORCID Icon & show all

References

  • Abdulkhani, A., Z. Echresh, and M. Allahdadi. 2020. Effect of nanofibers on the structure and properties of biocomposites. In Fiber-reinforced nanocomposites: fundamentals and applications, 321–18. Elsevier. doi:10.1016/B978-0-12-819904-6.00015-3.
  • Abolghasemi-Fakhri, L., B. Ghanbarzadeh, J. Dehghannya, F. Abbasi, and P. Adun. 2019. Styrene monomer migration from polystyrene based food packaging nanocomposite: Effect of clay and ZnO nanoparticles. Food and Chemical Toxicology 129:77–86. doi:10.1016/j.fct.2019.04.019.
  • Abral, H., J. Ariksa, M. Mahardika, D. Handayani, I. Aminah, N. Sandrawati, S. M. Sapuan, and R. A. Ilyas. 2020. Highly transparent and antimicrobial PVA based bionanocomposites reinforced by ginger nanofiber. Polymer Testing 81:106186. doi:10.1016/j.polymertesting.2019.106186.
  • Abral, H., M. Mahardika, D. Handayani, E. Sugiarti, A. Novi Muslimin, and A. N. Muslimin. 2019. Characterization of disintegrated bacterial cellulose nanofibers/PVA bionanocomposites prepared via ultrasonication. International Journal of Biological Macromolecules 135:591–99. doi:10.1016/j.ijbiomac.2019.05.178.
  • Akoueson, F., I. Paul-Pont, K. Tallec, A. Huvet, P. Doyen, A. Dehaut, and G. Duflos. 2023. Additives in polypropylene and polylactic acid food packaging: Chemical analysis and bioassays provide complementary tools for risk assessment. The Science of the Total Environment 857:159318. doi:10.1016/j.scitotenv.2022.159318.
  • Allafchian, A. R., S. Kalani, P. Golkar, H. Mohammadi, and S. Amir Hossein Jalali. 2020. A comprehensive study on plantago ovata/PVA biocompatible nanofibers: Fabrication, characterization, and biological assessment. Journal of Applied Polymer Science 137 (47):49560. doi:10.1002/app.49560.
  • Amroune, S., A. Belaadi, R. Dalmis, Y. Seki, A. Makhlouf, and H. Satha. 2022. Quantitatively investigating the effects of fiber parameters on tensile and flexural response of flax/epoxy biocomposites. Journal of Natural Fibers 19 (6):2366–81. doi:10.1080/15440478.2020.1817831.
  • Anwer, M. A. S., H. E. Naguib, A. Celzard, and V. Fierro. 2015. Comparison of the thermal, dynamic mechanical and morphological properties of PLA-Lignin & PLA-Tannin particulate green composites. Composites Part B: Engineering 82:92–99. doi:10.1016/j.compositesb.2015.08.028.
  • ASTM. 2006. Standard test method for haze and luminous transmittance of transparent plastics. American Society for Testing and Materials ASTM D1003.
  • ASTM. 2012. Standard test method for tensile properties of thin plastic sheeting. American Society for Testing and Materials D638-V.
  • Azammi, A. M. N., R. A. Ilyas, S. M. Sapuan, R. Ibrahim, M. S. N. Atikah, M. Asrofi, and A. Atiqah. 2020. Characterization studies of biopolymeric matrix and cellulose fibres based composites related to functionalized fibre-matrix interface. In Interfaces in particle and fibre reinforced composites, 29–93. Elsevier. doi:10.1016/B978-0-08-102665-6.00003-0.
  • Candan, Z., D. J. Gardner, and S. M. Shaler. 2016. Dynamic Mechanical Thermal Analysis (DMTA) of cellulose Nanofibril/Nanoclay/PMDI nanocomposites. Composites Part B: Engineering 90:126–32. doi:10.1016/j.compositesb.2015.12.016.
  • Candan, Z., A. Tozluoglu, O. Gonultas, M. Yildirim, H. Fidan, M. Hakki Alma, and T. Salan. 2022. Nanocellulose: Sustainable biomaterial for developing novel adhesives and composites. In Industrial applications of nanocellulose and its nanocomposites, 49–137. Elsevier. doi:10.1016/B978-0-323-89909-3.00015-8.
  • Cano, A. I., M. Cháfer, A. Chiralt, and C. González-Martínez. 2015. Physical and microstructural properties of biodegradable films based on pea starch and PVA. Journal of Food Engineering 167:59–64. doi:10.1016/j.jfoodeng.2015.06.003.
  • Cazón, P., M. Vázquez, and G. Velazquez. 2018a. Cellulose-glycerol-polyvinyl alcohol composite films for food packaging: Evaluation of water adsorption, mechanical properties, light-barrier properties and transparency. Carbohydrate Polymers 195:432–43. doi:10.1016/j.carbpol.2018.04.120.
  • Cazón, P., M. Vázquez, and G. Velazquez. 2018b. Novel composite films based on cellulose reinforced with chitosan and polyvinyl alcohol: Effect on mechanical properties and water vapour permeability. Polymer Testing 69:536–44. doi:10.1016/j.polymertesting.2018.06.016.
  • Chen, J., M. Zheng, K. Bing Tan, J. Lin, M. Chen, and Y. Zhu. 2022. Polyvinyl alcohol/xanthan gum composite film with excellent food packaging, storage and biodegradation capability as potential environmentally-friendly alternative to commercial plastic bag. International Journal of Biological Macromolecules 212:402–11. doi:10.1016/j.ijbiomac.2022.05.119.
  • Choudhary, S., A. Sachdeva, and P. Kumar. 2020. Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector. Renewable Energy 147:1801–14. doi:10.1016/j.renene.2019.09.126.
  • Dara, P. K., G. K. Sivaraman, K. Deekonda, A. Rangasamy, S. Mathew, C. N. Ravishankar, S. Mathew, and R. Cn. 2021. Biomodulation of poly (vinyl alcohol)/starch polymers into composite-based hybridised films: physico-chemical, structural and biocompatibility characterization. Journal of Polymer Research 28 (7):265. doi:10.1007/s10965-021-02578-y.
  • da Silva, D. J., M. M. de Oliveira, S. Hui Wang, D. J. Carastan, and D. S. Rosa. 2022. Designing antimicrobial polypropylene films with grape pomace extract for food packaging. Food Packaging and Shelf Life 34:100929. doi:10.1016/j.fpsl.2022.100929.
  • Ding, Z., Y. Tang, and P. Zhu. 2022. Reduced graphene oxide/cellulose nanocrystal composite films with high specific capacitance and tensile strength. International Journal of Biological Macromolecules 200:574–82. doi:10.1016/j.ijbiomac.2022.01.130.
  • Doustdar, F., A. Olad, and M. Ghorbani. 2022. Effect of glutaraldehyde and calcium chloride as different crosslinking agents on the characteristics of chitosan/cellulose nanocrystals scaffold. International Journal of Biological Macromolecules 208:912–24. doi:10.1016/j.ijbiomac.2022.03.193.
  • Feiya, F., L. Lingyan, L. Liu, J. Cai, Y. Zhang, J. Zhou, and L. Zhang. 2015. Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation. ACS Applied Materials & Interfaces 7 (4):2597–606. doi:10.1021/am507639b.
  • Haider, T. P., C. Völker, J. Kramm, K. Landfester, and F. R. Wurm. 2019. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angewandte Chemie International Edition 58 (1):50–62. doi:10.1002/anie.201805766.
  • Han, X., L. Ding, Z. Tian, Y. Song, R. Xiong, C. Zhang, J. Han, and S. Jiang. 2023. Potential new material for optical fiber: Preparation and characterization of transparent fiber based on natural cellulosic fiber and epoxy. International Journal of Biological Macromolecules 224:1236–43. doi:10.1016/j.ijbiomac.2022.10.209.
  • Han, Y., Y. Jiang, and H. Jinlian. 2020. Tea-polyphenol treated skin collagen owns coalesced adaptive-hydration, tensile strength and shape-memory property. International Journal of Biological Macromolecules 158:1–8. doi:10.1016/j.ijbiomac.2020.04.002.
  • Huang, B., H. He, H. Liu, W. Wu, Y. Ma, and Z. Zhao. 2019. Mechanically strong, heat-resistant, water-induced shape memory poly (vinyl alcohol)/regenerated cellulose biocomposites via a facile co-precipitation method. Biomacromolecules 20 (10):3969–79. doi:10.1021/acs.biomac.9b01021.
  • Hu, D., and L. Wang. 2016. Physical and antibacterial properties of polyvinyl alcohol films reinforced with quaternized cellulose. Journal of Applied Polymer Science 133:25. doi:10.1002/app.43552.
  • Jahan, Z., M. Bilal Khan Niazi, and Ø. Weiby Gregersen. 2018. Mechanical, thermal and swelling properties of cellulose nanocrystals/PVA nanocomposites membranes. Journal of Industrial and Engineering Chemistry 57:113–24. doi:10.1016/j.jiec.2017.08.014.
  • Jain, N., V. Kumar Singh, and S. Chauhan. 2017. A review on mechanical and water absorption properties of polyvinyl alcohol based composites/films. Journal of the Mechanical Behavior of Materials 26 (5–6):213–22. doi:10.1515/jmbm-2017-0027.
  • Joshi, S., and S. Patel. 2022. Review on mechanical and thermal properties of pineapple leaf fiber (PALF) reinforced composite. Journal of Natural Fibers 19 (15):10157–78. doi:10.1080/15440478.2021.1993487.
  • Kalambettu, A., A. Damodaran, S. Dharmalingam, and M. Tindivanam Vallam. 2015. Evaluation of biodegradation of pineapple leaf fiber reinforced PVA composites. Journal of Natural Fibers 12 (1):39–51. doi:10.1080/15440478.2014.880104.
  • Kashyap, P. K., S. Chauhan, Y. Singh Negi, N. Kumar Goel, and S. Rattan. 2022. Biocompatible carboxymethyl chitosan-modified glass ionomer cement with enhanced mechanical and anti-bacterial properties. International Journal of Biological Macromolecules 223:1506–20. doi:10.1016/j.ijbiomac.2022.11.028.
  • Khalili, H., M. Hamid Salim, S.E. Jabor Tlemcani, R. Makhlouf, F.Z. Semlali Aouragh Hassani, H. Ablouh, Z. Kassab, and M. El Achaby. 2022. Bio-nanocomposite films based on cellulose nanocrystals filled polyvinyl alcohol/alginate polymer blend. Journal of Fibers and Polymer Composites 1 (2):77–96. doi:10.55043/jfpc.v1i2.56.
  • Kumar, R., K. Kumar, and S. Bhowmik. 2018. Assessment and response of treated cocos nucifera reinforced toughened epoxy composite towards fracture and viscoelastic properties. Journal of Polymers and the Environment 26:2522–35. doi:10.1007/s10924-017-1150-y.
  • Lisdayana, N., F. Fahma, T. Candra Sunarti, and E. Savitri Iriani. 2020. Thermoplastic starch–PVA nanocomposite films reinforced with nanocellulose from oil palm empty fruit bunches (OPEFBs): Effect of starch type. Journal of Natural Fibers 17 (7):1069–80. doi:10.1080/15440478.2018.1558142.
  • Li, Y., M. Yao, C. Liang, H. Zhao, Y. Liu, and Y. Zong. 2022. Hemicellulose and nano/microfibrils improving the pliability and hydrophobic properties of cellulose film by interstitial filling and forming micro/nanostructure. Polymers 14 (7):1297. doi:10.3390/polym14071297.
  • Mahardika, M., H. Abral, A. Kasim, S. Arief, F. Hafizulhaq, and M. Asrofi. 2019. Properties of cellulose nanofiber/bengkoang starch bionanocomposites: effect of fiber loading. LWT 108554:108554. doi:10.1016/j.lwt.2019.108554.
  • Mathers, A., M. Pechar, F. Hassouna, and M. Fulem. 2022. API solubility in semi-crystalline polymer: Kinetic and thermodynamic phase behavior of PVA-based solid dispersions. International Journal of Pharmaceutics 623:121855. doi:10.1016/j.ijpharm.2022.121855.
  • Mohammadi, S., and A. Babaei. 2022. Poly (vinyl alcohol)/chitosan/polyethylene glycol-assembled graphene oxide bio-nanocomposites as a prosperous candidate for biomedical applications and drug/food packaging industry. International Journal of Biological Macromolecules 201:528–38. doi:10.1016/j.ijbiomac.2022.01.086.
  • Moradi, E., M. Hashemi Moosavi, S. Marzieh Hosseini, L. Mirmoghtadaie, M. Moslehishad, M. Reza Khani, N. Jannatyha, and S. Shojaee-Aliabadi. 2020. Prolonging shelf life of chicken breast fillets by using plasma-improved chitosan/low density polyethylene bilayer film containing summer savory essential oil. International Journal of Biological Macromolecules 156:321–28. doi:10.1016/j.ijbiomac.2020.03.226.
  • Niazi, M. B. K., Z. Jahan, S. Sofie Berg, and Ø. Weiby Gregersen. 2017. Mechanical, thermal and swelling properties of phosphorylated nanocellulose fibrils/PVA nanocomposite membranes. Carbohydrate Polymers 177:258–68. doi:10.1016/j.carbpol.2017.08.125.
  • Nugroho, A., Z. Bo, R. Mamat, W. H. Azmi, G. Najafi, and F. Khoirunnisa. 2021. Extensive examination of sonication duration impact on stability of Al2O3-polyol ester nanolubricant. International Communications in Heat and Mass Transfer 126:105418. doi:10.1016/j.icheatmasstransfer.2021.105418.
  • Nugroho, A., R. Mamat, Z. Bo, W. Azmi Wan Hamzah, M. Fairusham Ghazali, and T. Yusaf. 2022. “Surface modification for dispersion stability of novel FAl2O3-POE nanolubricant using functional SiO2.” In Proceedings of the 2nd Energy Security and Chemical Engineering Congress: Selected Articles from ESChE 2021, Malaysia, 179–92. Springer. doi:10.1007/978-981-19-4425-3_17.
  • Nurazzi, N. M., M. R. M. Asyraf, M. Rayung, M. N. F. Norrrahim, S. S. Shazleen, M. S. A. Rani, A. R. Shafi, H. A. Aisyah, M. H. M. Radzi, and F. A. Sabaruddin. 2021. Thermogravimetric analysis properties of cellulosic natural fiber polymer composites: A review on influence of chemical treatments. Polymers 13 (16):2710. doi:10.3390/polym13162710.
  • Okahisa, Y., K. Matsuoka, K. Yamada, and I. Wataoka. 2020. Comparison of polyvinyl alcohol films reinforced with cellulose nanofibers derived from oil palm by impregnating and casting methods. Carbohydrate Polymers 250:116907. doi:10.1016/j.carbpol.2020.116907.
  • Pilevar, Z., A. Bahrami, S. Beikzadeh, H. Hosseini, and S. Mahdi Jafari. 2019. Migration of styrene monomer from polystyrene packaging materials into foods: Characterization and safety evaluation. Trends in Food Science & Technology 91:248–61. doi:10.1016/j.tifs.2019.07.020.
  • Poyraz, B., A. Tozluoğlu, Z. Candan, and A. Demir. 2017. Matrix impact on the mechanical, thermal and electrical properties of microfluidized nanofibrillated cellulose composites. Journal of Polymer Engineering 37 (9):921–31. doi:10.1515/polyeng-2017-0022.
  • Poyraz, B., A. Tozluoğlu, Z. Candan, A. Demir, M. Yavuz, Ü. Büyuksarı, H. İ̇brahim Ünal, H. Fidan, and R. Cem Saka. 2018. TEMPO-Treated CNf composites: pulp and matrix effect. Fibers and Polymers 19 (1):195–204. doi:10.1007/s12221-018-7673-y.
  • Rahmadiawan, D., H. Abral, R. Muhammad Railis, I. Chayri Iby, M. Mahardika, D. Handayani, K. Dwi Natrana, D. Juliadmi, and F. Akbar. 2022. The enhanced moisture absorption and tensile strength of PVA/Uncaria gambir extract by boric acid as a highly moisture-resistant, anti-UV, and strong film for food packaging applications. Journal of Composites Science 6 (11):337. doi:10.3390/jcs6110337.
  • Sarwar, M. S., M. Bilal Khan Niazi, Z. Jahan, T. Ahmad, and A. Hussain. 2018. Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohydrate Polymers 184:453–64. doi:10.1016/j.carbpol.2017.12.068.
  • Singh, S., K. K. Gaikwad, and Y. Suk Lee. 2018. Antimicrobial and antioxidant properties of polyvinyl alcohol bio composite films containing seaweed extracted cellulose nano-crystal and basil leaves extract. International Journal of Biological Macromolecules 107:1879–87. doi:10.1016/j.ijbiomac.2017.10.057.
  • Singh, S. K., S. Khan, R. Kumar Mishra, and J. Karloopia. 2021. Fabrication and evaluation of mechanical properties of polymer matrix composite using nano fibers as a reinforcement. Materials Today: Proceedings 46:1376–83. doi:10.1016/j.matpr.2021.02.488.
  • Singh, S. S., A. Zaitoon, S. Sharma, A. Manickavasagan, and L.T. Lim. 2022. Enhanced hydrophobic paper-sheet derived from miscanthus× giganteus cellulose fibers coated with esterified lignin and cellulose acetate blend. International Journal of Biological Macromolecules 223:1243–56. doi:10.1016/j.ijbiomac.2022.11.066.
  • Solikhin, A., Y. Sudo Hadi, M. Yusram Massijaya, S. Nikmatin, S. Suzuki, Y. Kojima, and H. Kobori. 2018. Properties of poly (vinyl alcohol)/chitosan nanocomposite films reinforced with oil palm empty fruit bunch amorphous lignocellulose nanofibers. Journal of Polymers and the Environment 26:3316–33. doi:10.1007/s10924-018-1215-6.
  • Sultana, T., S. Sultana, H. Parvin Nur, and M. Wahab Khan. 2020. Studies on mechanical, thermal and morphological properties of betel nut husk nano cellulose reinforced biodegradable polymer composites. Journal of Composites Science 4 (3):83. doi:10.3390/jcs4030083.
  • Sun, J., Y. Pang, Y. Yang, J. Zhao, R. Xia, Y. Li, Y. Liu, and H. Guo. 2019. Improvement of rice Husk/HDPE bio-composites interfacial properties by silane coupling agent and compatibilizer complementary modification. Polymers 11 (12):1928. doi:10.3390/polym11121928.
  • Syafri, E., N. Herlina Sari, M. Mahardika, P. Amanda, R. Ahmad Ilyas, and R. A. Ilyas. 2021. Isolation and characterization of cellulose nanofibers from agave gigantea by chemical-mechanical treatment. International Journal of Biological Macromolecules 200:25–33. doi:10.1016/j.ijbiomac.2021.12.111.
  • Syafri, E., S. Melly, I. Anas, A. Defrian, S. Umar, and M. Mahardika. 2021. Extraction and characterization of agave gigantea fibers with alkali treatment as reinforcement for composites. Journal of Natural Fibers 19:1–10. doi:10.1080/15440478.2021.1964124.
  • Taghavi, N., I. Abeykoon Udugama, W.Q. Zhuang, and S. Baroutian. 2021. Challenges in biodegradation of non-degradable thermoplastic waste: From environmental impact to operational readiness. Biotechnology Advances 49:107731. doi:10.1016/j.biotechadv.2021.107731.
  • Taspika, M., R. Dwi Desiati, M. Mahardika, E. Sugiarti, and H. Abral. 2020. Influence of TiO2/Ag particles on the properties of chitosan film. Advances in Natural Sciences: Nanoscience and Nanotechnology 11 (1):15017. doi:10.1088/2043-6254/ab790e.
  • Tiwari, Y. M., and S. Kumar Sarangi. 2022. Characterization of raw and alkali treated cellulosic grewia flavescens natural fiber. International Journal of Biological Macromolecules 209:1933–42. doi:10.1016/j.ijbiomac.2022.04.169.
  • Tozluoglu, A., S. Ates, E. Durmaz, S. Sertkaya, R. Arslan, O. Ozcelik, and Z. Candan. 2022. Nanocellulose in paper and board coating. In Emerging nanomaterials: Opportunities and challenges in forestry sectors, 197–298. Springer. doi:10.1007/978-3-031-17378-3.
  • Tozluoğlu, A., B. Poyraz, Z. Candan, M. Yavuz, and R. Arslan. 2017. Biofilms from micro/nanocellulose of modified kraft pulp. Bulletin of Materials Science 40 (4):699–710. doi:10.1007/s12034-017-1416-y.
  • Wang, Q., H. Du, F. Zhang, Y. Zhang, M. Wu, G. Yu, C. Liu, B. Li, and H. Peng. 2018. Flexible cellulose nanopaper with high wet tensile strength, high toughness and tunable ultraviolet blocking ability fabricated from tobacco stalk via a sustainable method. Journal of Materials Chemistry A 6 (27):13021–30. doi:10.1039/C8TA01986J.
  • Wang, C., N. Wang, S. Liu, L.P. Choo-Simth, H. Zhang, and Z. Zhi. 2020. Investigation of microfibril angle of flax fibers using X-Ray diffraction and scanning electron microscopy. Journal of Natural Fibers 17 (7):1001–10. doi:10.1080/15440478.2018.1546639.
  • Wang, H., T. Xue, S. Wang, X. Jia, S. Cao, B. Niu, R. Guo, and H. Yan. 2022. Preparation, characterization and food packaging application of nano ZnO@ xylan/quaternized xylan/polyvinyl alcohol composite films. International Journal of Biological Macromolecules 215:635–45. doi:10.1016/j.ijbiomac.2022.06.157.
  • Wu, J., D. Wang, F. Meng, J. Li, C. Huo, X. Du, and S. Xu. 2022. Polyvinyl alcohol based bio-composite films reinforced by liquefaction products and cellulose nanofibrils from coconut coir. Journal of Applied Polymer Science 139 (12):51821. doi:10.1002/app.51821.
  • Yuan, H., G. Liu, Y. Chen, Y. Zhiwei, W. Jin, and G. Zhang. 2023. A versatile tag for simple preparation of cutinase towards enhanced biodegradation of polyethylene terephthalate. International Journal of Biological Macromolecules 225:149–61. doi:10.1016/j.ijbiomac.2022.11.126.
  • Yun, D., Y. He, H. Zhu, Y. Hui, C. Li, D. Chen, and J. Liu. 2022. Smart packaging films based on locust bean gum, polyvinyl alcohol, the crude extract of loropetalum chinense var. Rubrum petals and its purified fractions. International Journal of Biological Macromolecules 205:141–53. doi:10.1016/j.ijbiomac.2022.02.068.
  • Zhai, X., S. Zhou, R. Zhang, W. Wang, and H. Hou. 2022. Antimicrobial Starch/Poly (butylene adipate-co-terephthalate) nanocomposite films loaded with a combination of silver and zinc oxide nanoparticles for food packaging. International Journal of Biological Macromolecules 206:298–305. doi:10.1016/j.ijbiomac.2022.02.158.