375
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Babassu Fibers as Green Mortar Additives

, , , , , , , & show all

References

  • ABNT: Associação Brasileira de Normas Técnicas. 1988. NBR 13276: Argamassa Para Assentamentos e Revestimentos de Paredes e Tetos - Determinação Do Índice de Consistência. Rio de Janeiro: ABNT.
  • ABNT: Associação Brasileira de Normas Técnicas. 2005. NBR 9778: Argamassa e Concreto Endurecidos - Determinação Da Absorção de Água, Índice de Vazios e Massa Específica. Rio de Janeiro: ABNT.
  • ABNT: Associação Brasileira de Normas Técnicas. 2011. NBR 7222: Concreto e Argamassa - Determinação Da Resistência à Tração Por Compressão Diametral de Corpos de Prova Cilíndricos. Rio de Janeiro: ABNT.
  • ABNT: Associação Brasileira de Normas Técnicas. 2019. NBR 7215: Cimento Portland - Determinação Da Resistência à Compressão de Corpos de Prova Cilíndricos. Rio de Janeiro: ABNT.
  • Al-Ghaban, A., H. Jaber, and A. Shaher. 2018. Investigation of addition different fibers on the performance of cement mortar. Engineering and Technology Journal. 36 (9A):957–14. University of Technology. doi:10.30684/etj.36.9a.3.
  • Amantino, G. M., N. Pagan Hasparyk, F. Tiecher, and R. Dias Toledo Filho. 2022. Assessment of bio-aggregate concretes’ properties with rice residue. Journal of Building Engineering 52 (7):104348. doi:10.1016/j.jobe.2022.104348.
  • Andiç-Çakir, Ö., M. Sarikanat, H. Bahadir Tüfekçi, C. Demirci, and Ü. Halis Erdoǧan. 2014. Physical and mechanical properties of randomly oriented coir fiber-cementitious composites. Composites Part B Engineering 61:49–54. doi:10.1016/j.compositesb.2014.01.029.
  • Ardanuy, M., J. Claramunt, and R. Dias Toledo Filho. 2015. Cellulosic fiber reinforced cement-based composites: A review of recent research. Construction and Building Materials 79:115–28. Elsevier Ltd. doi:10.1016/j.conbuildmat.2015.01.035.
  • ASTM: ASTM International. 2014. ASTM C1557: Standard test method for tensile strength and young’s modulus of fibers. West Conshohocken: ASTM.
  • Ayeni, O., A. Aboubakar Mahamat, N. Linda Bih, T. Tiwa Stanislas, I. Isah, H. Savastano Junior, E. Boakye, and A. Peter Onwualu. 2022. Effect of coir fiber reinforcement on properties of metakaolin-based geopolymer composite. Applied Sciences 12 (11):5478. doi:10.3390/app12115478.
  • Balaji, A. N., and K. J. Nagarajan. 2017. Characterization of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves. Carbohydrate Polymers 174:200–08. Elsevier Ltd. doi:10.1016/j.carbpol.2017.06.065.
  • Brasileiro, G. A. M., J. Augusto Rocha Vieira, and L. Silva Barreto. 2013. Use of coir pith particles in composites with Portland cement. Journal of Environmental Management 131:228–38. doi:10.1016/j.jenvman.2013.09.046.
  • Cabral, J. M., S. Dias, D. Tatiane Souza, M. Braga, M. Mitiko, O. Cesar, H. Behling, M. Patrícia, F. Dias, B. José, et al. 2012. Produção de Briquetes e Péletes a Partir de Resíduos Agrícolas, Agroindustriais e Florestais. Brasília, DF: Embrapa Agroenergia.
  • Cao, M., X. Ling, and C. Zhang. 2018. Rheological and mechanical properties of hybrid fiber reinforced cement mortar. Construction and Building Materials 171:736–42. Elsevier Ltd. doi:10.1016/j.conbuildmat.2017.09.054.
  • Carrazza, L. R., J. Carlos Cruz Ávila, and M. Lima Silva. 2012. Babaçu (Attalea Spp.) Aproveitamento Integral Do Fruto e Da Folha Do Babaçu. Manual Tecnológico de Aproveitamento Integral do Fruto do Babaçu, Vol. 2. Brasília.
  • Chen, X., W. Shengxing, and J. Zhou. 2013. Influence of porosity on compressive and tensile strength of cement mortar. Construction and Building Materials 40:869–74. doi:10.1016/j.conbuildmat.2012.11.072.
  • Çomak, B., A. Bideci, and Ö. Salli Bideci. 2018. Effects of hemp fibers on characteristics of cement based mortar. Construction and Building Materials 169 (April):794–99. doi:10.1016/j.conbuildmat.2018.03.029.
  • CONAB (Companhia Nacional de Abastecimento). 2021. Boletim Da Sociobiodiversidade 5:1–22.
  • Dawood, E. T., and M. Ramli. 2012. Properties of high-strength flowable mortar reinforced with palm fibers. ISRN Civil Engineering 2012 (January):1–5. doi:10.5402/2012/718549.
  • Donnini, J., T. Bellezze, and V. Corinaldesi. 2018. Mechanical, electrical and self-sensing properties of cementitious mortars containing short carbon fibers. Journal of Building Engineering 20:8–14. Elsevier Ltd. doi:10.1016/j.jobe.2018.06.011.
  • Eires, R., C. Cardoso, and A. Camões. 2014. Argamassas de Terra e Cal Reforcadas Com Fibras Naturais. In Congresso Luso-Brasileiro de Materiais de Construção Sustentáveis, edited by J. Barroso, 317–25. Guimarães, Portugal: Universidade do Minho.
  • Fonseca, C. S., M. Felipe Silva, R. Farinassi Mendes, P. Ricardo Gherardi Hein, A. Luiz Zangiacomo, H. Savastano, and G. Henrique Denzin Tonoli. 2019. Jute fibers and Micro/Nanofibrils as reinforcement in extruded fiber-cement composites. Construction and Building Materials 211 (6):517–27. doi:10.1016/j.conbuildmat.2019.03.236.
  • Furtado, J. B. M., P. Afonso Furtado Filho, T. Pereira Oliveira, M. Rodrigues Sousa Caetano, I. Maria Souza Araújo, F. Cardoso Figueiredo, and J. Ribeiro Santos Júnior. 2020. Enhancement of the photodegradative potential of polymer composites containing babassu fiber. Materials Research 23(2): Universidade Federal de Sao Carlos. doi:10.1590/1980-5373-MR-2019-0438
  • Gil, L., E. Bernat-Masó, and F. Javier Cañavate. 2016. Changes in properties of cement and lime mortars when incorporating fibers from end-of-life tires. Fibers 4 (1):1–13. MDPI Multidisciplinary Digital Publishing Institute. doi:10.3390/fib4010007.
  • Hall, C. 1989. Water sorptivity of mortars and concretes: A review. Magazine of Concrete Research 41 (147):51–61. doi:10.1680/macr.1989.41.147.51.
  • Hasselman, D. P. H. 1969. Griffith Flaws and the effect of porosity on tensile strength of brittle ceramics. Journal of the American Ceramic Society - Discussion and Notes 457 (8):457–457. doi:10.1111/j.1151-2916.1969.tb11982.x.
  • Huang, J., and D. Rodrigue. 2022. Stiffness behavior of sisal fiber reinforced foam concrete under flexural loading. Journal of Natural Fibers. 19 (15):12251–67. Taylor and Francis Ltd. doi:10.1080/15440478.2022.2054896.
  • Islam, M. S., and S. Ju Ahmed. 2018. Influence of jute fiber on concrete properties. Construction and Building Materials 189:768–76. Elsevier Ltd. doi:10.1016/j.conbuildmat.2018.09.048.
  • Jaber, H. A. 2016. Effect of glass wool addition on some properties of cement mortar. Engineering and Technology Journal 34 (14):2685–91. doi:10.30684/etj.34.14A.12.
  • Kabir, M. M., H. Wang, K. T. Lau, and F. Cardona. 2012. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B Engineering 43 (7):2883–92. doi:10.1016/j.compositesb.2012.04.053.
  • Khalid, M. Y., R. Imran, Z. Ullah Arif, N. Akram, H. Arshad, A. Al Rashid, and F. Pedro García Márquez. 2021. Developments in chemical treatments, manufacturing techniques and potential applications of natural-fibers-based biodegradable composites. Coatings 11 (3):293. doi:10.3390/coatings11030293.
  • Kumar, P., and R. Roy. 2018. Study and experimental investigation of flow and flexural properties of natural fiber reinforced self compacting concrete. Procedia Computer Science 125:598–608. Elsevier B.V. doi:10.1016/j.procs.2017.12.077.
  • Lemos, J. J. S., and R. Carneiro Souza. 2018. Sistemas Agroextrativistas Como Alternativa de Preservação Da Palmeira de Babaçu No Maranhão. Revista de Política Agrícola 1: 82–95.
  • Lertwattanaruk, P., and A. Suntijitto. 2015. Properties of natural fiber cement materials containing nut coir and oil palm fibers for residential building applications. Construction and Building Materials 94:664–69. Elsevier Ltd. doi:10.1016/j.conbuildmat.2015.07.154.
  • Martel, W. D. N. D. R., I. P. Salgado, and F. A. Silva. 2022. The influence of fiber treatment on the morphology, water absorption capacity and mechanical behavior of curauá fibers. Journal of Natural Fibers. 19 (2):642–57. Taylor and Francis Ltd. doi:10.1080/15440478.2020.1758863.
  • Mehrez, I., H. Hachem, R. Gheith, and A. Jemni. 2023. Optimization of Mortar/Agave americana fibers composite behavior based on experimental design. Journal of Natural Fibers 20 (1):Informa UK Limited. doi:10.1080/15440478.2022.2152149.
  • Meza, A., and S. Siddique. 2019. Effect of aspect ratio and dosage on the flexural response of FRC with recycled fiber. Construction and Building Materials 213:286–91. Elsevier Ltd. doi:10.1016/j.conbuildmat.2019.04.081.
  • Moshi, A. A. M., D. Ravindran, S. R. Sundara Bharathi, S. Indran, and G. Suganya Priyadharshini. 2020. Characterization of surface-modified natural cellulosic fiber extracted from the root of ficus religiosa tree. International Journal of Biological Macromolecules 156:212–21. Elsevier B.V.:997–1006. doi:10.1016/j.ijbiomac.2020.04.117.
  • Onuaguluchi, O., and N. Banthia. 2016. Plant-based natural fibre reinforced cement composites: A review. Cement and Concrete Composites 68:96–108. Elsevier Ltd. doi:10.1016/j.cemconcomp.2016.02.014.
  • Oushabi, A., S. Sair, F. Oudrhiri Hassani, Y. Abboud, O. Tanane, and A. E. Bouari. 2017. The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPF–polyurethane composite. South African Journal of Chemical Engineering 23:116–23. Elsevier B.V. doi:10.1016/j.sajce.2017.04.005.
  • Page, J., F. Khadraoui, M. Boutouil, and M. Gomina. 2017. Multi-physical properties of a structural concrete incorporating short flax fibers. Construction and Building Materials 140:344–53. Elsevier Ltd. doi:10.1016/j.conbuildmat.2017.02.124.
  • Potiron, O., K. B. Cristel, R. Valéry Ratiarisoa, H. Savastano Junior, and M.-A. Arsene. 2022. Enhancement of the reactivity of sugarcane bagasse ash for pozzolan-lime paste: Effect of particle size. Construction and Building Materials 350 (October):128561. doi:10.1016/j.conbuildmat.2022.128561.
  • Protásio, T. P., P. Fernando Trugilho, A. Amanda Silva César, A. Napoli, I. Cristina Nogueira Alves Melo, and M. Gomes Silva. 2014. Babassu nut residues: Potential for bioenergy use in the north and northeast of Brazil. SpringerPlus 3 (1):1–14. SpringerOpen. doi:10.1186/2193-1801-3-124.
  • Raposo, A. K. S., L. Coelho Paixão, A. Almeida Rocha, I. Alves Lopes, G. Augusto Silva Santos, G. Adriana Corrêa Ribeiro, A. Silva Menezes, A. K. D. Barros Filho, and A. Amorim Santana. 2021. Characterization of biodegradable films produced from mixtures of alginate, starch and babassu fibers. Journal of Polymers and the Environment 29 (4):1212–26. Springer. doi:10.1007/s10924-020-01952-z.
  • Ryshkewitch, E. 1953. Compression strength of porous sintered alumina and zirconia. In 9th communication to Ceramography, 65–68. Pittsburgh: Journal of The American Ceramic Society - Ryshkewitch.
  • Sadrinejad, I., R. Madandoust, and M. Mohammad Ranjbar. 2018. The mechanical and durability properties of concrete containing hybrid synthetic fibers. Construction and Building Materials 178:72–82. Elsevier Ltd. doi:10.1016/j.conbuildmat.2018.05.145.
  • Saghrouni, Z., D. Baillis, and A. Jemni. 2020. Composites based on Juncus maritimus fibers for building insulation. Cement and Concrete Composites 106:1–12. Elsevier Ltd. doi:10.1016/j.cemconcomp.2019.103474.
  • Saraiva, A., N. Oliveira, M. Pedroza Filho, and W. Lopes. 2022. Cadeia produtiva do babaçu: uma análise através das dimensões da abordagem da cadeia global de valor. In Cadenas globales de valor, ed. E. Senhoras and L. Bermúdez, 291–314. Brasil: IOLE.
  • Sawsen, C., K. Fouzia, B. Mohamed, and G. Moussa. 2014. Optimizing the formulation of flax fiber-reinforced cement composites. Construction and Building Materials 54:659–64. doi:10.1016/j.conbuildmat.2013.12.038.
  • Sawsen, C., K. Fouzia, B. Mohamed, and G. Moussa. 2015. Effect of flax fibers treatments on the rheological and the mechanical behavior of a cement composite. Construction and Building Materials 79 (March):229–35. Elsevier Ltd. doi:10.1016/j.conbuildmat.2014.12.091.
  • Vantadori, S., A. Carpinteri, and A. Zanichelli. 2019. Lightweight construction materials: Mortar reinforced with date-palm mesh fibres. Theoretical and Applied Fracture Mechanics 100:39–45. Elsevier B.V. doi:10.1016/j.tafmec.2018.12.011.
  • Xinxin, L., S. Chen, X. Qing, and Y. Xu. 2018. Modeling capillary water absorption in concrete with discrete crack network. Journal of Materials in Civil Engineering 30 (1):1–15. American Society of Civil Engineers (ASCE). doi:10.1061/(asce)mt.1943-5533.0002122.
  • Yan, L., B. Kasal, and L. Huang. 2016. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Composites Part B Engineering 92:94–132. Elsevier Ltd. doi:10.1016/j.compositesb.2016.02.002.