491
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Process Optimization for Aqueous Ethanosolv Pretreatment of Coffee Husk Biomass Using Response Surface Methodology

ORCID Icon, ORCID Icon &

References

  • Abejón, R., H. Pérez-Acebo, and L. Clavijo. 2018. Alternatives for chemical and biochemical lignin valorization: Hot topics from a bibliometric analysis of the research published during the 2000-2016 period. Processes 6 (98):50. doi:10.3390/pr6080098.
  • Alexander, R. A., G. Moorthy Innasimuthu, S. Kumar Rajaram, P. Maran Jeganathan, and S. Chellam Somasundarar. 2020. Process optimization of microwave-assisted alkali pretreatment for enhanced delignification of Prosopis Juliflora biomass. Environmental Progress and Sustainable Energy 39 (1):31. doi:10.1002/ep.13289.
  • Awoyale, A. A., and D. Lokhat. 2021. Experimental determination of the effects of pretreatment on selected Nigerian lignocellulosic biomass in bioethanol production. Scientific Reports 11 (1):1–19. doi:10.1038/s41598-020-78105-8.
  • Ayeni, A. O., F. K. Hymore, S. N. Mudliar, S. C. Deshmukh, D. B. Satpute, J. A. Omoleye, and R. A. Pandey. 2013. Hydrogen peroxide and lime based oxidative pretreatment of wood waste to enhance enzymatic hydrolysis for a biorefinery: Process parameters optimization using response surface methodology. Fuel 106:187–94. doi:10.1016/j.fuel.2012.12.078.
  • Baêta, B. E., P. H. de Miranda Cordeiro, F. Passos, L. V. Gurgel, S. F. de Aquino, and F. Fdz-Polanco. 2017. Steam explosion pretreatment improved the biomethanization of coffee husks. Bioresource Technology 245 (August):66–72. doi:10.1016/j.biortech.2017.08.110.
  • Behr, K., and T. Seidensticker. 2020. The ‘wood-stuff’ - lignin. In Chemistry of renewables, 391. Springer-Verlag GmbH Germany. doi:10.1007/978-3-662-61430-3_11.
  • Bekalo, S. A., and H.-W. Reinhardt. 2010. Fibers of coffee husk and hulls for the production of particleboard. Materials and Structures 43 (8):1049–60. doi:10.1617/s11527-009-9565-0.
  • Brosse, N., M. Hazwan Hussin, and A. Abdul Rahim. 2017. Organosolv processes. Advances in Biochemical Engineering/biotechnology 24. doi:10.1007/10.
  • Chu, Q., W. Tong, J. Chen, W. Shufang, Y. Jin, H. Jinguang, and K. Song. 2021. Organosolv pretreatment assisted by carbocation scavenger to mitigate surface barrier effect of lignin for improving biomass saccharification and utilization. Biotechnology for Biofuels 14 (1):1–13. doi:10.1186/s13068-021-01988-w.
  • Cruz, G., C. E. Braz, S. L. Ferreira, A. M. dos Santos, and P. M. Crnkovic. 2013. “Physicochemical properties of Brazilian biomasses: Potential applications as renewable energy source.” In 22nd International Congress of Mechanical Engineering, 10072–84. doi:10.13140/2.1.4761.2485.
  • Ethaib, S., R. Omar, S. M. M. Kamal, and D. R. A. Biak. 2015. Microwave assisted pretreatment of lignocellulosic biomass: A review. Journal of Engineering Science & Technology. special Issue21: 97–109.
  • Goh, C. S., H. Teng Tan, K. Teong Lee, and N. Brosse. 2011. Evaluation and optimization of organosolv pretreatment using combined severity factors and response surface methodology. Biomass and Bioenergy 35 (9):4025–33. doi:10.1016/j.biombioe.2011.06.034.
  • Gopalakrishnan, K., S. Kim, and H. Ceylan. 2010. Lignin recovery and utilization. In Bioenergy and biofuel from biowastes and biomass, ed. S. K. Khanal, R. Y. Surampalli, T. C. Zhang, B. P. Lamsal, R. D. Tyagi, and C. M. Kao, 247–74. Reston, Virginia: the American Society of Civil Engineers. doi:10.1061/9780784410899.ch12.
  • Gouvea, B. M., C. Torres, A. S. Franca, L. S. Oliveira, and E. S. Oliveira. 2009. Feasibility of ethanol production from coffee husks. Biotechnology Letters 31 (9):1315–19. doi:10.1007/s10529-009-0023-4.
  • Heggset, E. B., K. Syverud, and K. Øyaas. 2016. Novel pretreatment pathways for dissolution of lignocellulosic biomass based on ionic liquid and low temperature alkaline treatment. Biomass and Bioenergy 93:194–200. doi:10.1016/j.biombioe.2016.07.023.
  • Huang, J., F. Shiyu, and L. Gan. 2019. Lignin chemistry and applications. In Lignin chemistry and applications, 1–276. Chemical Industry Press. doi:10.1016/C2016-0-04708-3.
  • Inan, H., O. Turkay, and C. Akkiris. 2014. Microwave and microwave-alkali effect on Barley straw for total sugar yield. International Journal of Global Warming 6 (2–3):212–21. doi:10.1504/IJGW.2014.061011.
  • Jia, Y., C. Yang, B. Shen, Z. Ling, C. Huang, L. Xin, C. Lai, and Q. Yong. 2020. Comparative study on enzymatic digestibility of acid-pretreated poplar and larch based on a comprehensive analysis of the lignin-derived recalcitrance. Bioresource Technology 37:124225. doi:10.1016/j.biortech.2020.124225.
  • Jõul, P., T. T. Ho, U. Kallavus, A. Konist, K. Leiman, O. Stella Salm, M. Kulp, M. Koel, and T. Lukk. 2022. Characterization of organosolv lignins and their application in the preparation of aerogels. Materials 15 (2861):19. doi:10.3390/ma15082861.
  • Kandasamy, S., G. Muthusamy, S. Balakrishnan, S. Duraisamy, S. Thangasamy, K.-K. Seralathan, and S. Chinnappan. 2016. Optimization of protease production from surface-modified coffee pulp waste and corncobs using bacillus sp. By SSF. Biotechnology 6 (167):1–11. doi:10.1007/s13205-016-0481-z.
  • Karabaş, H., and S. Boran. 2019. Comparison of engine performance and exhaust emission properties of diesel and safflower biodiesel using multi-response surface methodology. Environmental Progress and Sustainable Energy 38 (3):1–8. doi:10.1002/ep.13034.
  • Kaur, P., G. Singh, and S. Kumar Arya. 2022. Tandem catalytic approaches for lignin depolymerization: A review. Biomass Conversion and Biorefinery (123456789):12. doi:10.1007/s13399-022-02980-6.
  • Kim, Y., Y. Anna, M. Han, G. Wook Choi, and B. Chung. 2011. Enhanced enzymatic saccharification of barley straw pretreated by Ethanosolv Technology. Applied Biochemistry and Biotechnology 163 (1):143–52. doi:10.1007/s12010-010-9023-z.
  • Kouris, P. D., X. Huang, X. Ouyang, D. J. G. P. van Osch, G. J. W. Cremers, M. D. Boot, and E. J. M. Hensen. 2021. The impact of biomass and acid loading on methanolysis during two-step lignin-first processing of birchwood. Catalysts 11 (750):1–17. doi:10.3390/catal11060750.
  • Lin, L., R. Yan, Y. Liu, and W. Jiang. 2010. In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: Cellulose, Hemicellulose and Lignin. Bioresource Technology 101 (21):8217–23. doi:10.1016/j.biortech.2010.05.084.
  • Morales-Martínez, J. L., M. G. Aguilar-Uscanga, E. Bolaños-Reynoso, and L. López-Zamora. 2021. Optimization of chemical pretreatments using response surface methodology for second-generation ethanol production from coffee husk waste. BioEnergy Research 14 (3):815–27. doi:10.1007/s12155-020-10197-6.
  • Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, and M. Ladisch. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96 (6):673–86. doi:10.1016/j.biortech.2004.06.025.
  • Mukherjee, A., V. Babu Borugadda, J. J. Dynes, C. Niu, and A. K. Dalai. 2021. Carbon dioxide capture from flue gas in biochar produced from spent coffee grounds: Effect of surface chemistry and porous structure. Journal of Environmental Chemical Engineering 9 (5):106049. doi:10.1016/j.jece.2021.106049.
  • Mukherjee, A., J. A. Okolie, C. Niu, and A. K. Dalai. 2022. Experimental and modeling studies of torrefaction of spent Coffee Grounds and Coffee husk: Effects on surface chemistry and carbon dioxide capture performance. ACS Omega 7:638–53. doi:10.1021/acsomega.1c05270.
  • Oliveira, C., F. de, K. Srinivas, G. L. Helms, N. G. Isern, J. R. Cort, A. Roberto Gonçalves, and B. Kiær Ahring. 2018. Characterization of coffee (coffea arabica) husk lignin and degradation products obtained after oxygen and alkali addition. Bioresource Technology 257:172–80. doi:10.1016/j.biortech.2018.01.041.
  • Parchami, M., S. Agnihotri, and M. J. Taherzadeh. 2022. Bioresource technology aqueous ethanol organosolv process for the valorization of Brewer ’ s spent grain (BSG). Bioresource Technology 362 (August):127764. doi:10.1016/j.biortech.2022.127764.
  • Park, N., H. Yun Kim, B. Wook Koo, H. Yeo, and I. Gyu Choi. 2010. Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus Rigida). Bioresource Technology 101 (18):7046–53. doi:10.1016/j.biortech.2010.04.020.
  • Pielhop, T., G. O. Larrazábal, M. H. Studer, S. Brethauer, C.-M. Seidel, and P. Rudolf Von Rohr. 2015. Pretreatment increases cellulase deactivation †. The Royal Society of Chemistry, Green Chemistry 12. doi:10.1039/c4gc02381a.
  • Qin, C., K. Clarke, and L. Kecheng. 2014. Interactive forces between lignin and cellulase as determined by atomic force microscopy. Biotechnology for Biofuels 7 (65):9. doi:10.1186/1754-6834-7-65.
  • Qin, L., L. Wen-Chao, L. Liu, J.-Q. Zhu, L. Xia, L. Bing-Zhi, and Y.-J. Yuan. 2016. Inhibition of lignin-derived phenolic compounds to Cellulase. Biotechnology for Biofuels 9 (1):1–10. doi:10.1186/s13068-016-0485-2.
  • Rabelo, S. C., P. Yoritomo Souza Nakasu, E. Scopel, M. Fernandes Araújo, L. Henrique Cardoso, and A. C. da Costa. 2023. Organosolv pretreatment for biorefineries: Current status, perspectives, and challenges. Bioresource Technology 369:128331. doi:10.1016/j.biortech.2022.128331.
  • Salim, M. R., J. Asik, and M. Sani Sarjadi. 2021. Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena Leucocephala Bark. Wood Science and Technology 55 (2):295–313. doi:10.1007/s00226-020-01258-2.
  • Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton. 2008. Determination of ash in biomass. Laboratory analytical procedure (LAP). Technical Report NREL/TP-510-42622.
  • Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker. 2012. Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure (LAP). Technical Report NREL/TP-510-42618.
  • Sluiter, A., R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton. 2005. Determination of extractives in biomass. Laboratory analytical procedure (LAP). Technical Report NREL/TP-510-42619.
  • Stuart, B.2004Infrared spectroscopy: Fundamentals and applications. Edited byBarba Stuart Vol. 15. John Wiley & Sons, Ltd. doi:10.1002/0470011149.
  • Taleb, F., M. Ammar, M. Mosbah, R. Salem, and Y. Moussaoui. 2020. Chemical modification of lignin derived from spent coffee grounds for methylene blue adsorption. Scientific Reports 10 (1):1–13. doi:10.1038/s41598-020-68047-6.
  • Tolesa, L. D., B. S. Gupta, and M. Jer Lee. 2018. Treatment of coffee husk with ammonium-based ionic liquids: Lignin extraction, degradation, and characterization. ACS Omega 3 (9):10866–76. doi:10.1021/acsomega.8b01447.
  • Trajano, H. L., N. L. Engle, M. Foston, A. J. Ragauskas, T. J. Tschaplinski, and C. E. Wyman. 2013. The fate of lignin during hydrothermal pretreatment. Biotechnology for Biofuels 6 (1):1–16. doi:10.1186/1754-6834-6-110.
  • Veiga, T. R., J. T. Lima, A. L. Dessimoni, M. F. Pego, J. R. Soares, and P. F. Trugilho. 2017. Caracterização de Diferentes Biomassas Vegetais Para Produção de Biocarvões. Cerne 23 (4):529–36. doi:10.1590/01047760201723042373.
  • Zhang, X., Y. Guang, X. Feng, L. Zhenqiu, L. Bin, and Q. Cui. 2020. Ammonia-ethanol-water pretreatment of wheat straw for facilitating enzymatic saccharification integrated with the preparation of submicron lignin spheres. BioResources 15 (3):5087–109. doi:10.15376/biores.15.3.5087-5109.
  • Zhao, J., W. Xiaorong, and D. Wang. 2021. Potential of wheat milling byproducts to produce fermentable sugars via mild ethanol-alkaline pretreatment. ACS Sustainable Chemistry and Engineering 9 (10):3626–32. doi:10.1021/acssuschemeng.1c00248.