209
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Antimicrobial and Antioxidant Properties of Polyvinyl Alcohol Biocomposite Films Containing Ferulic Acid and Cellulose Extracted from Robinia Pseudoacacia Pods

, , , , , , & show all

References

  • Andrade, J., C. González-Martínez, and A. Chiralt. 2021. “Effect of Phenolic Acids on the Properties of Films from Poly (Vinyl Alcohol) of Different Molecular Characteristics.” Food Packaging and Shelf Life 29:100711. https://doi.org/10.1016/j.fpsl.2021.100711.
  • Apak, R., K. Güçlü, M. Özyürek, and S. E. Karademir. 2004. “Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method.” Journal of Agricultural and Food Chemistry 52:7970–22. https://doi.org/10.1021/jf048741x.
  • Arnao, M. B. 2000. “Some Methodological Problems in the Determination of Antioxidant Activity Using Chromogen Radicals: A Practical Case.” Trends in Food Science & Technology 11 (11): 419–421. https://doi.org/10.1016/S0924-2244(01)00027-9.
  • Callegarin, F., J. A. Q. Gallo, F. Debeaufort, and A. Voilley. 1997. “Lipids and Biopackaging.” Journal of the American Oil Chemists’ Society 74 (10): 1183–1192. https://doi.org/10.1080/10408390802145724.
  • Çayan, F., E. Deveci, G. Tel-Çayan, and M. E. Duru. 2020. “Identification and Quantification of Phenolic Acid Compounds of Twenty-Six Mushrooms by HPLC–DAD.” Journal of Food Measurement and Characterization 14 (3): 1690–1698. https://doi.org/10.1007/s11694-020-00417-0.
  • Çelik, S. E., M. Özyürek, K. Güçlü, R. Apak. 2010. “Determination of Antioxidants by a Novel On-Line HPLC-Cupric Reducing Antioxidant Capacity (CUPRAC) Assay with Post-Column Detection.” Analytica Chimica Acta 674 (1): 79–88. https://doi.org/10.1016/j.aca.2010.06.013.
  • Chana-Thaworn, J., S. Chanthachum, and T. Wittaya. 2011. “Properties and Antimicrobial Activity of Edible Films Incorporated with Kiam Wood (Cotyleobium Lanceotatum) Extract.” LWT - Food Science and Technology 44:284–292. https://doi.org/10.1016/j.lwt.2010.06.020.
  • Choo, K., Y. Ching, C. Chuah, S. Julai, and N.-S. Liou. 2016. “Preparation and Characterization of Polyvinyl Alcohol-Chitosan Composite Films Reinforced with Cellulose Nanofiber.” Materials 9 (8): 644. https://doi.org/10.3390/ma9080644.
  • Dai, H., Y. Huang, and H. Huang. 2018. “Enhanced Performances of Polyvinyl Alcohol Films by Introducing Tannic Acid and Pineapple Peel-Derived Cellulose Nanocrystals.” Cellulose 25 (8): 4623–4637. https://doi.org/10.1007/s10570-018-1873-5.
  • Donlan, R. M. 2002. “Biofilms: Microbial Life on Surfaces.” Emerging Infectious Diseases 8:881–890. https://doi.org/10.3201/eid0809.020063.
  • Eisa, W. H., and A. A. Shabaka. 2013. “Ag Seeds Mediated Growth of Au Nanoparticles within PVA Matrix: An Eco-Friendly Catalyst for Degradation of 4-Nitrophenol.” Reactive and Functional Polymers 73:1510–1516. https://doi.org/10.1016/j.reactfunctpolym.2013.07.018.
  • Fontana, A. J. 2000. “Understanding the Importance of Water Activity in Food.” Cereal Foods World 45:7–10. https://www.mendeley.com/catalogue/ec8f200e-8481-313e-b7be-2e0f8c6a8fdb/?utm_source=desktop&utm_medium=1.19.8&utm_campaign=open_catalog&userDocumentId=%7Bd08aaa91-4b62-462b-a785-ba9e9df61d53%7D.
  • Galiwango, E., N. S. Abdel Rahman, A. H. Al-Marzouqi, M. M. Abu-Omar, and A. A. Khaleel. 2019. “Isolation and Characterization of Cellulose and α-Cellulose from Date Palm Biomass Waste.” Heliyon 5:e02937. https://doi.org/10.1016/j.heliyon.2019.e02937.
  • Ghaderi, M., M. Mousavi, H. Yousefi, and M. Labbafi. 2014. “All-Cellulose Nanocomposite Film Made from Bagasse Cellulose Nanofibers for Food Packaging Application.” Carbohydrate Polymers 104:59–65. https://doi.org/10.1016/j.carbpol.2014.01.013.
  • Glišić, M., D. Lakušić, J. Šinžar-Sekulić, and S. Jovanović. 2014. “GIS Analysis of Spatial Distribution of Invasive Tree Species in the Protected Natural Area of Mt.” Avala (Serbia) Botanica Serbica 38:131–138. https://www.mendeley.com/catalogue/6f1baa58-b3a0-3d83-91df-cc411146f4c7/?utm_source=desktop&utm_medium=1.19.8&utm_campaign=open_catalog&userDocumentId=%7B53fb6d48-0eaa-4243-b28e-da1a9773236b%7D.
  • Han, J., C. Zhou, Y. Wu, F. Liu, and Q. Wu. 2013. “Self-Assembling Behavior of Cellulose Nanoparticles During Freeze-Drying: Effect of Suspension Concentration, Particle Size, Crystal Structure, and Surface Charge.” Biomacromolecules 14:1529–1540. https://doi.org/10.1021/bm4001734.
  • Harini, K., and M. Sukumar. 2019. “Development of Cellulose-Based Migratory and Nonmigratory Active Packaging Films.” Carbohydrate Polymers 204:202–213. https://doi.org/10.1016/j.carbpol.2018.10.018.
  • Huang, W., Y. Yang, B. Zhao, G. Liang, S. Liu, X.-L. Liu, D.-G. Yu, et al. 2018. “Fast Dissolving of Ferulic Acid via Electrospun Ternary Amorphous Composites Produced by a Coaxial Process.” Pharmaceutics 10 (3): 115. https://doi.org/10.3390/pharmaceutics10030115.
  • Hu, Z., R. M. Berry, R. Pelton, and E. D. Cranston. 2017. “One-Pot Water-Based Hydrophobic Surface Modification of Cellulose Nanocrystals Using Plant Polyphenols.” ACS Sustainable Chemistry & Engineering 5:5018–5026. https://doi.org/10.1021/acssuschemeng.7b00415.
  • Jeschull, F., F. Scott, and S. Trabesinger. 2019. “Interactions of Silicon Nanoparticles with Carboxymethyl Cellulose and Carboxylic Acids in Negative Electrodes of Lithium-Ion Batteries.” Journal of Power Sources 431:63–74. https://doi.org/10.1016/j.jpowsour.2019.05.036.
  • Johar, N., I. Ahmad, and A. Dufresne. 2012. “Extraction, Preparation and Characterization of Cellulose Fibres and Nanocrystals from Rice Husk.” Industrial Crops and Products 37:93–99. https://doi.org/10.1016/j.indcrop.2011.12.016.
  • Jonoobi, M., A. Khazaeian, P. M. Tahir, S. S. Azry, and K. Oksman. 2011. “Characteristics of Cellulose Nanofibers Isolated from Rubberwood and Empty Fruit Bunches of Oil Palm Using Chemo-Mechanical Process.” Cellulose 18:1085–1095. https://doi.org/10.1007/s10570-011-9546-7.
  • Karadag, A., B. Ozcelik, and S. Saner. 2009. “Review of Methods to Determine Antioxidant Capacities.” Food Analytical Methods 2 (1): 41–60. https://doi.org/10.1007/s12161-008-9067-7.
  • Kassab, Z., I. Kassem, H. Hannache, R. Bouhfid, A. E. K. Qaiss, and M. El Achaby. 2020. “El Achaby M. Tomato Plant Residue As New Renewable Source for Cellulose Production: Extraction of Cellulose Nanocrystals with Different Surface Functionalities.” Cellulose 27 (8): 4287–4303. https://doi.org/10.1007/s10570-020-03097-7.
  • Latos-Brozio, M., and A. Masek. 2020. “The Application of Natural Food Colorants as Indicator Substances in Intelligent Biodegradable Packaging Materials.” Food and Chemical Toxicology 135:110975. https://doi.org/10.1016/j.fct.2019.110975.
  • Laxmeshwar, S. S., D. J. Madhu Kumar, S. Viveka, and G. K. Nagaraja. 2012. “Preparation and Properties of Biodegradable Film Composites Using Modified Cellulose Fibre-Reinforced with PVA.” ISRN Polymer Science 2012:1–8. https://doi.org/10.5402/2012/154314.
  • Madhu, G., V. C. Bose, A. S. Aiswaryaraj, K. Maniammal, and V. Biju. 2013. “Defect Dependent Antioxidant Activity of Nanostructured Nickel Oxide Synthesized Through a Novel Chemical Method.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 429:44–50. https://doi.org/10.1016/j.colsurfa.2013.03.055.
  • Majumdar, S., and B. Adhikari. 2005. “Polyvinyl alcohol-cellulose composite: a taste sensing material.” Bulletin of Materials Science 28:703–712. https://doi.org/10.1007/BF02708541.
  • Marinas, I. C., G. Gradisteanu Pircalabioru, E. Oprea, E.-I. Geana, I. Zgura, C. Romanitan, E. Matei, et al. 2023. “Physico-Chemical and Pro-Wound Healing Properties of Microporous Cellulosic Sponge from Gleditsia Triacanthos Pods Functionalized with Phytolacca americana Fruit Extract.” Cellulose 30 (16): 10313–10339. https://doi.org/10.1007/s10570-023-05491-3.
  • Martínez, J. 2002. “Microbial Bioburden on Oral Solid Dosage Forms.” Pharmaceutical Technology: 26. https://www.mendeley.com/catalogue/04f49a8f-22f4-376c-87e5-a9d1fde01cd0/?utm_source=desktop&utm_medium=1.19.8&utm_campaign=open_catalog&userDocumentId=%7B25f90e21-0a82-428c-aab8-fc997a19698d%7D.
  • Miladi, H., R. Slama, M. D. Ben, S. Zouari, A. Bakhrouf, and E. Ammar. 2013. “Essential Oil of Thymus Vulgaris L. and Rosmarinus Officinalis L.: Gas Chromatography-Mass Spectrometry Analysis, Cytotoxicity and Antioxidant Properties and Antibacterial Activities Against Foodborne Pathogens.” Natural Science 5 (06): 729–739. https://doi.org/10.4236/ns.2013.56090.
  • Milovanovic, S., D. Markovic, K. Aksentijevic, D. B. Stojanovic, J. Ivanovic, and I. Zizovic. 2016. “Application of Cellulose Acetate for Controlled Release of Thymol.” Carbohydrate Polymers 147:344–353. https://doi.org/10.1016/j.carbpol.2016.03.093.
  • Ngadaonye, J. I., L. M. Geever, J. Killion, and C. L. Higginbotham. 2013. “Development of Novel Chitosan-Poly(n,n-Diethylacrylamide) IPN Films for Potential Wound Dressing and Biomedical Applications.” Journal of Polymer Research 20 (7): 161. https://doi.org/10.1007/s10965-013-0161-1.
  • Ozcelik, B., J. H. Lee, and D. B. Min. 2003. “Effects of Light, Oxygen, and pH on the Absorbance of 2,2-Diphenyl-1-Picrylhydrazyl.” Journal of Food Science 68:487–490. https://doi.org/10.1111/j.1365-2621.2003.tb05699.x.
  • Pasquini, D., E. de Morais Teixeira, A. A. da Silva Curvelo, M. N. Belgacem, and A. Dufresne. 2008. “Surface Esterification of Cellulose Fibres: Processing and Characterisation of Low-Density Polyethylene/Cellulose Fibres Composites.” Composites Science and Technology 68 (1): 193–201. https://doi.org/10.1016/j.compscitech.2007.05.009.
  • Peng, Y., Y. Wu, and Y. Li. 2013. “Development of Tea Extracts and Chitosan Composite Films for Active Packaging Materials.” International Journal of Biological Macromolecules 59:282–289. https://doi.org/10.1016/j.ijbiomac.2013.04.019.
  • Popa, M., B. C. Ciobanu, L. Ochiuz, J. Desbrieres, C. S. Stan, and C. A. Peptu. 2018. “Controlling the Release Kinetics of Calcein Loaded Liposomes from Chitosan/Tannic Acid and Chitosan/Poly (Vinyl Alcohol)/Tannic Acid Hydrogels.” 52:353–370. https://www.cellulosechemtechnol.ro/pdf/CCT5-6(2018)/p.353-370.pdf.
  • Prior, R. L., X. Wu, and K. Schaich. 2005. “Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements.” Journal of Agricultural and Food Chemistry 53 (10): 4290–4302. https://doi.org/10.1021/jf0502698.
  • Realini, C. E., and B. Marcos. 2014. “Active and Intelligent Packaging Systems for a Modern Society.” Meat Science 98 (3): 404–419. https://doi.org/10.1016/j.meatsci.2014.06.031.
  • Reichling, J., P. Schnitzler, U. Suschke, and R. Saller. 2009. “Essential Oils of Aromatic Plants with Antibacterial, Antifungal, Antiviral, and Cytotoxic Properties – an Overview.” Complementary Medicine Research 16 (2): 79–90. https://doi.org/10.1159/000207196.
  • Sabiha-Hanim, S., M. A. Mohd Noor, and A. Rosma. 2015. “Fractionation of Oil Palm Frond Hemicelluloses by Water or Alkaline Impregnation and Steam Explosion.” Carbohydrate Polymers 115:533–539. https://doi.org/10.1016/j.carbpol.2014.08.087.
  • Sajjadi, S. E., Y. Shokoohinia, and N.-S. Moayedi. 2012. “Isolation and Identification of Ferulic Acid from Aerial Parts of Kelussia Odoratissima Mozaff.” Jundishapur Journal of Natural Pharmaceutical Products 7 (4): 159–162. https://doi.org/10.17795/jjnpp-4861.
  • Schvartzman, M. S., C. Belessi, F. Butler, P. N. Skandamis, and K. N. Jordan. 2011. “Effect of pH and Water Activity on the Growth Limits of Listeria Monocytogenes in a Cheese Matrix at Two Contamination Levels.” Journal of Food Protection 74 (11): 1805–1813. https://doi.org/10.4315/0362-028X.JFP-11-102.
  • Sharma, S., S. Barkauskaite, B. Duffy, A. K. Jaiswal, and S. Jaiswal. 2020. “Characterization and Antimicrobial Activity of Biodegradable Active Packaging Enriched with Clove and Thyme Essential Oil for Food Packaging Application.” Foods 9 (8): 1117. https://doi.org/10.3390/foods9081117.
  • Shchipunov, Y. 2012. “Bionanocomposites: Green Sustainable Materials for the Near Future.” Pure and Applied Chemistry 84 (12): 2579–2607. https://doi.org/10.1351/PAC-CON-12-05-04.
  • Silva, M. A. D., A. C. K. Bierhalz, and T. G. Kieckbusch. 2009. “Alginate and Pectin Composite Films Crosslinked with Ca2+ Ions: Effect of the Plasticizer Concentration.” Carbohydrate Polymers 77 (4): 736–742. https://doi.org/10.1016/j.carbpol.2009.02.014.
  • Sinharay, S., and M. Bousmina. 2005. “Biodegradable Polymers and Their Layered Silicate Nanocomposites: In Greening the 21st Century Materials World.” Progress in Materials Science 50 (8): 962–1079. https://doi.org/10.1016/j.pmatsci.2005.05.002.
  • Stan, G. E., T. Tite, A.-C. Popa, I. M. Chirica, C. C. Negrila, C. Besleaga, I. Zgura, et al. 2020. “The Beneficial Mechanical and Biological Outcomes of Thin Copper-Gallium Doped Silica-Rich Bio-Active Glass Implant-Type Coatings.” Coatings 10 (11): 1119. https://doi.org/10.3390/coatings10111119.
  • Suganthi, S., S. Vignesh, J. Kalyana Sundar, and V. Raj. 2020. “Fabrication of PVA Polymer Films with Improved Antibacterial Activity by Fine-Tuning via Organic Acids for Food Packaging Applications.” Applied Water Science 10 (4): 100. https://doi.org/10.1007/s13201-020-1162-y.
  • Taflick, T., L. A. Schwendler, S. M. L. Rosa, C. I. D. Bica, and S. M. B. Nachtigall. 2017. “Cellulose Nanocrystals from Acacia Bark–Influence of Solvent Extraction.” International Journal of Biological Macromolecules 101:553–561. https://doi.org/10.1016/j.ijbiomac.2017.03.076.
  • Taheri, P., R. Jahanmardi, M. Koosha, and S. Abdi. 2020. “Physical, Mechanical and Wound Healing Properties of Chitosan/Gelatin Blend Films Containing Tannic Acid And/Or Bacterial Nanocellulose.” International Journal of Biological Macromolecules 154:421–432. https://doi.org/10.1016/j.ijbiomac.2020.03.114.
  • Takahashi, H., M. Kashimura, H. Koiso, T. Kuda, and B. Kimura. 2013. “Use of Ferulic Acid As a Novel Candidate of Growth Inhibiting Agent Against Listeria Monocytogenes in Ready-To-Eat Food.” Food Control 33 (1): 244–248. https://doi.org/10.1016/j.foodcont.2013.03.013.
  • Talari, A. C. S., M. A. G. Martinez, Z. Movasaghi, S. Rehman, and I. U. Rehman. 2017. “Advances in Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues.” Applied Spectroscopy Reviews 52 (5): 456–506. https://doi.org/10.1080/05704928.2016.1230863.
  • Tang, X. Z., P. Kumar, S. Alavi, and K. P. Sandeep. 2012. “Recent Advances in Biopolymers and Biopolymer-Based Nanocomposites for Food Packaging Materials.” Critical Reviews in Food Science and Nutrition 52 (5): 426–442. https://doi.org/10.1080/10408398.2010.500508.
  • Tao, R., J. Sedman, and A. Ismail. 2021. “Antimicrobial Activity of Various Essential Oils and Their Application in Active Packaging of Frozen Vegetable Products.” Food Chemistry 360:129956. https://doi.org/10.1016/j.foodchem.2021.129956.
  • Thaipong, K., U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, and D. Hawkins Byrne. 2006. “Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts.” Journal of Food Composition and Analysis 19 (6–7): 669–675. https://doi.org/10.1016/j.jfca.2006.01.003.
  • Vasconcelos, A., A. Gomes, and A. Cavaco-Paulo. 2012. “Novel Silk Fibroin_elastin Wound Dressings - CORE Reader.” Acta Biomaterialia 8 (8): 3049–3060. https://doi.org/10.1016/j.actbio.2012.04.035.
  • Vermeiren, L., F. Devlieghere, M. van Beest, N. de Kruijf, and J. Debevere. 1999. “Developments in the Active Packaging of Foods.” Trends in Food Science & Technology 10 (3): 77–86. https://doi.org/10.1016/S0924-2244(99)00032-1.
  • Vítková, M., J. Müllerová, J. Sádlo, J. Pergl, and P. Pyšek. 2017. “Black Locust (Robinia pseudoacacia) Beloved and Despised: A Story of an Invasive Tree in Central Europe.” Forest Ecology and Management 384:287–302. https://doi.org/10.1016/j.foreco.2016.10.057.
  • Vogler, E. A. 1998. “Structure and Reactivity of Water at Biomaterial Surfaces.” Advances in Colloid and Interface Science 74 (1–3): 69–117. https://doi.org/10.1016/S0001-8686(97)00040-7.
  • Wang, Z., Z. Yao, J. Zhou, M. He, Q. Jiang, A. Li, S. Li, et al. 2019. “Improvement of Polylactic Acid Film Properties Through the Addition of Cellulose Nanocrystals Isolated from Waste Cotton Cloth.” International Journal of Biological Macromolecules 129:878–886. https://doi.org/10.1016/j.ijbiomac.2019.02.021.
  • Wing, R. E. 1996. “Starch Citrate: Preparation and Ion Exchange Properties.” Starch - Stärke 48 (7–8): 275–279. https://doi.org/10.1002/star.19960480709.
  • Yang, S., Y. Zhang, W. Yue, W. Wang, Y.-Y. Wang, T.-Q. Yuan, R.-C. Sun, et al. 2016. “Valorization of Lignin and Cellulose in Acid-Steam-Exploded Corn Stover by a Moderate Alkaline Ethanol Post-Treatment Based on an Integrated Biorefinery Concept.” Biotechnology for Biofuels 9 (1): 238. https://doi.org/10.1186/s13068-016-0656-1.
  • Yao, S., S. Nie, H. Zhu, S. Wang, X. Song, and C. Qin. 2017. “Extraction of Hemicellulose by Hot Water to Reduce Adsorbable Organic Halogen Formation in Chlorine Dioxide Bleaching of Bagasse Pulp.” Industrial Crops and Products 96:178–185. https://doi.org/10.1016/j.indcrop.2016.11.046.
  • Yu, H.-Y., D.-Z. Zhang, F.-F. Lu, and J. Yao. 2016. “New Approach for Single-Step Extraction of Carboxylated Cellulose Nanocrystals for Their Use as Adsorbents and Flocculants.” ACS Sustainable Chemistry & Engineering 4 (5): 2632–2643. https://doi.org/10.1021/acssuschemeng.6b00126.
  • Zhuo, X., C. Liu, R. Pan, X. Dong, and Y. Li. 2017. “Nanocellulose Mechanically Isolated from Amorpha Fruticosa Linn.” ACS Sustainable Chemistry & Engineering 5 (5): 4414–4420. https://doi.org/10.1021/acssuschemeng.7b00478.
  • Zuluaga, R., J.-L. Putaux, A. Restrepo, I. Mondragon, and P. Gañán. 2007. “Cellulose Microfibrils from Banana Farming Residues: Isolation and Characterization.” Cellulose 14 (6): 585–592. https://doi.org/10.1007/s10570-007-9118-z.