320
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of Particles Released from Single-wall Carbon Nanotube/Polymer Composites with or Without Thermal Aging by an Accelerated Abrasion Test

, , , , , & show all

REFERENCES

  • Mueller, N.C., and B. Nowack: Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 42(12):4447–4453 (2008).
  • Gottschalk, F., T. Sonderer, R.W. Scholz, and B. Nowack: Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ. Sci. Technol. 43(24):9216–9222 (2009).
  • Gottschalk, F., T. Sonderer, R.W. Scholz, and B. Nowack: Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environ. Toxicol. Chem. 29(5):1036–1048 (2010).
  • Petersen, E.J., L. Zhang, N.T. Mattison, et al.: Potential release pathways environmental fate and ecological risks of carbon nanotubes. Environ. Sci. Technol. 45:9837–9856 (2011).
  • Muller, J., F. Huaux, N. Moreau, et al.: Respiratory toxicity of multi-wall carbon nanotubes. Toxicol. Appl. Pharmacol. 207:221–231 (2005).
  • Muller, J., F. Huaux, A. Fonseca, et al.: Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: Toxicological aspects. Chem. Res. Toxicol. 21:1698–1705 (2008).
  • Shvedova, A.A., E.R. Kisin, A.R. Murray, et al.: Vitamin E deficiency enhances pulmonary inflammatory response and oxidative stress induced by single-walled carbon nanotubes in C57BL/6 mice. Toxicol. Appl. Pharmacol. 221:339–348 (2007).
  • Shvedova, A.A., E.R. Kisin, A.R. Murray, et al.: Inhalation vs. aspiration of singlewalled carbon nanotubes in C57BL/6 mice: Inflammation, fibrosis, oxidative stress, and mutagenesis. Am. J. Physiol. Lung Cell Mol. Physiol. 295:552–565 (2008).
  • Wei, W., A. Sethuraman, C. Jin, N.A. Monteiro-Riviere, and R.J. Narayan: Biological properties of carbon nanotubes. J. Nanosci. Nanotechnol. 7:1284–1297 (2007).
  • Ma-Hock, L., S. Treumann, V. Strauss, et al.: Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol. Sci. 112:468–481 (2009).
  • Morimoto, Y., M. Horie, N. Kobayashi, N. Shinohara, and M. Shimada: Inhalation toxicity assessment of carbon-based nanoparticles. Acc. Chem. Res. 46:770–781 (2012).
  • Madani, S.Y., A. Mandel, and A.M. Seifalian: A concise review of carbon nanotube's toxicology. Nano Rev. 4:21521 (2013).
  • Manke, A., L. Wang, and Y. Rojanasakul: Pulmonary toxicity and fibrogenic response of carbon nanotubes. Toxicol. Mech. Methods 23:196–206 (2013).
  • Kashiwagi, T., M.F. Mu, K. Winey, et al.: Relation between the viscoelastic and flammability properties of polymer nanocomposites. Polymer 49(20):4358–4368 (2008).
  • Bouillard, J.X., A. Vignes, B. Rmili, et al.: Nanowastes: “Risk Assessment from the End-of-Life Combustion of Nanomaterials.” International Conference on Safe Production and Use of Nanomaterials. NANOSAFE, Grenoble, France, November 16–18, 2010.
  • Schlagenhauf, L., B. Chu, J. Buha, F.A. Nuesch, and J. Wang: Release of carbon nanotubes from an epoxy based nanocomposite during an abrasion process. Environ. Sci. Technol. 46(13):7366–7372 (2012).
  • Wohlleben, W., S. Brill, M.W. Meier, et al.: On the lifecycle of nanocomposites: Comparing released fragments and their in vivo hazards from three release mechanisms and four nanocomposites. Small 7:2384–2395 (2011).
  • Cena, L.G., and T.M. Peters: Characterization and control of airborne particles emitted during production of epoxy/carbon nanotube nanocomposites. J. Occup. Environ. Hyg. 8:86–92 (2011).
  • Bello, D., B.L. Wardle, N. Yamamoto, et al.: Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. J. Nanopart. Res. 11(1):231–249 (2009).
  • Golanski, L., A. Guiot, D. Braganza, and F. Tardif: New method for the characterization of abrasion-induced nanoparticle release into air from nanomaterials. NSTI Nanotechnol. 1:720–723 (2010).
  • Guiot, A., L. Golanski, and F. Tardif: Measurement of nanoparticle removal by abrasion. J. Phys. Conf. Ser. 170:012014
  • Tardif, F., A. Guiot, and L. Golanski: Measurement of Nanofiller Removal by Abrasion. Proceedings of the Nanotech 2009 Conference, Houston, TX, May 3–7,
  • Golanski, L., A. Guiot, M. Pras, and F. Tardif: Release-ability of nano fillers from different nanomaterials (toward the acceptability of nanoproduct). J. Nanopart. Res. 14:962–970 (2012).
  • Porter, A.E., M. Gass, K. Muller, J.N. Skepper, P.A. Midgley, and M. Welland: Direct imaging of single-walled carbon nanotubes in cells. Nat. Nanotechnol. 2:713–717 (2007).
  • Hata, K., D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima: Water assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362–1364 (2004).
  • Hata, K.: Super Growth Method, AIST's world-class carbon nanotube-related research. AIST TODAY Intern. Edition 41:9 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.