1,007
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Occupational Exposure to Airborne Nanomaterials: An Assessment of Worker Exposure to Aerosolized Metal Oxide Nanoparticles in Semiconductor Wastewater Treatment

, , &
Pages 469-481 | Received 06 Aug 2014, Accepted 29 Jan 2015, Published online: 15 Jun 2015

REFERENCES

  • Global Industry Analysts, Inc.: (10/1/2010). “Global Market for Nanotechnology Enabled Products to reach US$2.41 Trillion by 2015, According to a New Report by Global Industry Analysts, Inc. http://www.prweb.com/releases/nanotechnology/nano_products/prweb4719764.htm (. accessed
  • Project on Emerging Nanotechnologies (PEN)Inventory Finds Increase in Consumer Products Containing Nanoscale Materials: Re-Launched Inventory Seeks Input to Address Scientific Uncertainty http://www.nanotechproject.org/cpi/ (. accessed October 29, 2014).
  • Lux Research: The Nanotech Report, 5th ed. New York: Lux Research, 2007.
  • Roco, M.C., C.A. Mirkin, and M.C. Hersam WTEC Panel Report on Nanotechnology Research Directions for Societal Needs in 2020: Retrospective and Outlook. World Technology Evaluation Center (WTEC), 2010.
  • Research and Markets: The Global Market for Metal Oxide Nanoparticles to 2020. Dublin: Future Markets, Inc., March 2013.
  • National Institute for Occupational Safety and Health (NIOSH): “NIOSH Program Portfolio: Respiratory Diseases. Inputs: NIOSH Strategic Goals.” http://www.cdc.gov/niosh/programs/resp/goals.html (accessed May 1, 2014).
  • Centers for Disease Control and Prevention (CDC)/National Institute for Occupational Safety and Health (NIOSH)/Nanotechnology Research Center (NTRC): Progress towards Safe Nanotechnology in the Workplace, 2007.
  • National Institute for Occupational Safety and Health (NIOSH): Current Intelligence Bulletin 65: Occupational Exposure to Carbon Nanotubes and Nanofibers. NIOSH, 2013.
  • National Institute for Occupational Safety and Health (NIOSH): U.S. Centers for Disease Control. Current Intelligence Bulletin 63: Occupational Exposure to Titanium Dioxide. NIOSH, 2011.
  • Shepard, M.N., and S. Brenner: An occupational exposure assessment for engineered nanoparticles used in semiconductor fabrication. Ann. Occup. Hyg. 58(2):251–265 (2014).
  • Yanda, R., M. Heynes, and A. Miller: Demystifying Chipmaking. Burlington, MA: Elsevier, Inc., 2005.
  • Borst, C., W. Gill, and R. Gutmann: Chemical-mechanical Polishing of Low Dielectric Constant Polymers and Organosilcate Glasses. Norwell, MA: Kluwer Academic Publishers, 2002.
  • Maurer-Jones,Y.S., M.A., Y.S. Lin, and C.L. Haynes Functional assessment of metal oxide nanoparticle toxicity in immune cells. ACS Nano 4:3363–3373 (2010).
  • Park, E.J., and K. Park: Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol. Lett. 184(1):18–25 (2009).
  • Wang, F., F. Gao, M. Lan, et al.: Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicol. in Vitro 23:808–815 (2009).
  • Kaewamatawong, T., A. Shimada, M. Okajima, et al.: Acute and subacute pulmonary toxicity of low dose of ultrafine colloidal silica particles in mice after intratracheal instillation. Toxicol. Pathol. 34(7):958–965 (2006).
  • Lin, W., Y.W. Huang, X.D. Zhou, and Y. Ma: In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol. Appl. Pharmacol. 217(3):252–259 (2006).
  • Cho, W.S., R. Duffin, C.A. Poland, et al.: Metal oxide nanoparticles induce unique inflammatory footprints in the lung: Important implications for nanoparticle testing. Environ. Health Perspect. 118(12):1699–1706 (2010).
  • Zhang, H., D.R. Dunphy, X. Jiang, et al.: Processing pathway dependence of amorphous silica nanoparticle toxicity: Colloidal vs. pyrolytic. J. Am. Chem. Soc. 134:15790–15804 (2012).
  • Lanone, S., F. Rogerieux, J. Geys, et al.: Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Particle Fibre Toxicol. 6(14):1–12. (2009).
  • Jiang, W., H. Mashayekhi, and B. Xing: Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ. Pollution 157(5):1619–1625 (2009).
  • Hu, X., S. Cook, P. Wang, and H.M. Hwang: In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Sci. Total Environ. 407(8):3070–3072 (2009).
  • Horie, M., K. Nishio, K. Fujita, et al.: Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. Chem. Res. Toxicol 22:543–553 (2009).
  • Park, E.J., J. Choi, Y.K. Park, et al.: Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 245:90–100 (2008).
  • Lin, W., Y.W. Huang, X.D. Zhou, et al.: Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int. J. Toxicol. 25(6):451–457 (2006).
  • Ma, J.Y., H. Zhao, R.R. Mercer, et al.: Cerium oxide nanoparticle-induced pulmonary inflammation and alveolar macrophage functional change in rats. J. Occup. Environ. Hyg. 6(6):363–373 (2009).
  • Schubert, D., R. Dargusch, J. Raitano, et al.: Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem. Biophys. Res. Comm. 342:86–91 (2006).
  • Colon, J., N. Hsieh, A. Ferguson, et al.: Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomed.: Nanotechnol. Biol. Med. 6:698–705 (2010).
  • Das, M., S. Patil, N. Bhargava, et al.: Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomat. 28(10):1918–1925 (2007).
  • Xia, T., M. Kovochich, M. Liong, et al.: Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2(10):2121–2134 (2008).
  • Shepard, M.N., and S.A. Brenner: Cutaneous exposure scenarios for engineered nanoparticles used in semiconductor fabrication: A preliminary investigation of workplace surface contamination. Int. J. Occup. Environ. Health 20(3):247–257 (2014).
  • Ignacio, J.S., and W.H. Bullock (eds.): A Strategy for Assessing and Managing Occupational Exposures, 3rd ed. Falls Church, VA: American Industrial Hygiene Association (AIHA) Press, 2006.
  • Peters, T.M., S. Elzey, R. Johnson, et al.: Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety. J. Occup. Environ. Hyg. 6:73–81 (2009).
  • Schmoll, L.H., T.M. Peters, and P.T. O'Shaughnessy: Use of a condensation particle counter and an optical particle counter to assess the number concentration of engineered nanoparticles. J. Occup. Environ. Hyg. 7:535–545 (2010).
  • Methner, M., L. Hodson, and C. Geraci: Nanoparticle Emission Assessment Technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials-Part A. J. Occup. Environ. Hyg. 7:127–132 (2009).
  • Methner, M., L. Hodson, A. Dames, et al.: Nanoparticle Emission Assessment Technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials - Part B: Results from 12 field studies. J. Occup. Environ. Hyg. 7:163–176 (2010).
  • Klein Entink, R.H., W. Fransman, and D.H. Brouwer: How to statistically analyze nano exposure measurement results: Using an ARIMA time series approach. J. Nanopart. Res. 13:6991–7004 (2001).
  • National Institute for Occupational Safety and Health (NIOSH): Method 5040. In NIOSH Manual of Analytical Methods (NMAM), 4th ed., by P.C. Schlecht and P.F. O'Conner (eds.) (NIOSH Pub. No. 94-113). Cincinnati, OH: NIOSH, 1994.
  • Occupational Safety and Health Administration (OSHA): Metal and Metalloid Particulates in Workplace Atmospheres (ICP Analysis). OSHA Method ID-125G. November 1988, revised September 2002.
  • National Institute for Occupational Safety and Health (NIOSH): Method 0500. In NIOSH Manual of Analytical Methods (NMAM), 4th ed., by P.C. Schlecht and P.F. O'Conner (eds.) (NIOSH Pub. No. 94-113). Cincinnati, OH: NIOSH, 1994.
  • Schulte, P.A., D. Trout, R.D. Zumwalde, et al.: Options for occupational health surveillance of workers potentially exposed to engineered nanoparticles: Dtate of the science. J. Occup. Environ. Med. 50(5):517–526 (2008).
  • Oberdörster, G., E. Oberdörster, and J. Oberdörster: Nanotoxicology: Sn emerging discipline involving studies of ultrafine particles. Environ. Health Perspect. 113(7):823–839 (2005).
  • Curwin, B., and S. Bertke: Exposure characterization of metal oxide nanoparticles in the workplace. J. Occup. Environ. Hyg. 8(10):580–587 (2011).
  • Lee, J.H., K. Ahn, S.M. Kim, et al.: Continuous 3-day exposure assessment of workplace manufacturing silver nanoparticles. J. Nanopart. Res. 14:1134–1144 (2012).
  • Plitzko, S.: Workplace exposure to engineered nanoparticles. Inhal. Toxicol. 21:25–29 (2009).
  • Huang, C.H., C.Y. Tai, C.Y. Huang, et, et al.: Measurements of respirable dust and nanoparticle concentrations in a titanium dioxide pigment production factory. J. Environ. Sci. Health Part A 45(10):1227–1233 (2009).
  • National Institute for Occupational Safety and Health (NIOSH): Protecting the Nanotechnology Workforce: NIOSH Nanotechnology Research and Guidance Strategic Plan, 2013–2016 (NIOSH Publication 2014–106). Cincinnati, OH: NIOSH 2013.,
  • Brouwer, D., M. Berges, M.A. Virji, et al.: Harmonization of measurement strategies for exposure to manufactured nano-objects; Report of a workshop. Ann. Occup. Hyg. 56:1–9 (2012).
  • Abbott, L.C., and A.D. Maynard: Exposure assessment approaches for engineered nanomaterials. Risk Anal. 30:1634–1644 (2010).
  • Kuhlbusch, T.A., C. Asbach, H. Fissan, et al.: Nanoparticle exposure at nanotechnology workplaces: A review. Part Fibre Toxicol. 8:22 (2011).
  • Brenner, S.A. and N.M. Neu-Baker:Occupational exposure to nanomaterials: Assessing the potential for cutaneous exposure to metal oxide nanoparticles in a semiconductor facility. J. Chem. Health Safety [In Press]. Epub ahead of print doi: 10.1016/j.jchas.2014.11.001.
  • Roth, G.A., N.M. Neu-Baker, and S.A. Brenner:Comparative characterization methods for metal oxide nanoparticles in aqueous suspensions. J. Chem. Health Safety [In Press]. Epub ahead of print doi:10.1016/j.jchas.2015.02.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.