393
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Beryllium solubility in occupational airborne particles: Sequential extraction procedure and workplace application

&

References

  • Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES): Avis de l'Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail relative à la proposition de valeurs limites d'exposition à des agents chimiques en milieu professionnel: Le béryllium et ses composés. [Notice from the French National Agency for Food Safety, Environment and Labour on the proposed exposure limits to chemical agents in the workplace: beryllium and its compounds]. Paris: ANSES, 2010.
  • ACGIH: 2010 Threshold Limit Values (TLVs®) and Biological Exposures Indices (BEIs®) – Beryllium and Compounds. Cincinnati, OH: ACGIH, 2010.
  • Kreiss, K., M.M. Mroz, L.S. Newman, J. Martyny, and B. Zhen: Machining risk of beryllium disease and sensitization with median exposures below 2 µg/m3. Am. J. Ind. Med. 30:16–25 ( 1996).
  • Kreiss, K., M.M. Mroz, B. Zhen, H. Wiedemann, and B. Barna: Risks of beryllium disease related to work processes at a metal, alloy, and oxide production plant. Occup. Environ. Med. 54:605–612 ( 1997).
  • International Agency for Research on Cancer (IARC): Beryllium, cadmium, mercury and exposures in the glass manufacturing industry. In IARC monographs on the evaluation of carcinogenic risks to humans 58:41–117 ( 1993).
  • Newman, L.S., M.M. Mroz, L.A. Maier, E.M. Daniloff, and R. Balkissoon: Efficacy of serial medical surveillance for chronic beryllium disease in a beryllium machining plant. J. Occup. Environ. Med. 43:231–237 ( 2001).
  • Henneberger, P.K., D. Cumro, D.D. Deubner, M.S. Kent, M. McCawley, and K. Kreiss: Beryllium sensitization and disease among long-term and short-term workers in a beryllium ceramic plant. Arch. Occup. Environ. Health 74:167–176 ( 2001).
  • Newman, L.S, M.M. Mroz, R. Balkissoon, and L.A. Maier: Beryllium sensitization progresses to chronic beryllium disease: A longitudinal study of disease risk. Am. J. Respir. Crit. Care Med. 171:54–60 ( 2005).
  • Harper, M.: A review of workplace aerosol sampling procedures and their relevance to the assessment of beryllium exposure. J. Environ. Monit. 8:598–604 ( 2006).
  • ASTM International: ASTM D7202, Standard test method for determination of beryllium in the workplace using field-based extraction and fluorescence detection. West Conshohocken, PA: ASTM International, 2005.
  • National Institute for Occupational Safety and Health (NIOSH): Method 7704, beryllium in air by field-portable fluorometry. In NIOSH Manual of Analytical Methods (NMAM). Cincinnati, OH: NIOSH, 2003.
  • International Organization for Standardization (ISO): Workplace air—Determination of metals and metalloids in airborne particulate matter by inductively coupled plasma atomic emission spectrometry (ISO 15202 – 3 parts). [ Standard] Geneva: ISO, 2012.
  • Institut National de Recherche et de Sécurité (INRS): Métaux – Métalloïdes sur membranes en ester de cellulose [Metals – Metalloids on cellulose esters membranes] (Fiche 113). In Métrologie des Polluants, Évaluation de l'Exposition Professionnelle, Méthodes de Prélèvement et d'Analyse de l'Air (MétroPol). Paris: INRS, 2010.
  • National Institute for Occupational Safety and Health (NIOSH): Method 7102, beryllium & compounds, as Be. In NIOSH Manual of Analytical Methods (NMAM). Cincinnati, OH: NIOSH, 2003.
  • International Organization for Standardization (ISO): Workplace air—Determination of metals and metalloids in airborne particulate matter by inductively coupled plasma mass spectrometry (ISO 30011). [Standard] Geneva: ISO, 2010.
  • Brisson, M.J., K. Ashley, A.B. Stefaniak, A.A. Ekechukwu, and K.L. Creek: Trace-level beryllium analysis in the laboratory and in the field—State of the art, challenges and opportunities. J. Environ. Monit. 8:605–611 ( 2006).
  • Finch, G.L., W.T. Lowther, M.D. Hoover, and A.L. Brooks: Effects of beryllium metal particles on the viability and function of cultured rat alveolar macrophages. J. Toxicol. Environ. Health 34:103–114 ( 1991).
  • Paustenbach, D.J., A.K. Madl, and J.F. Greene: Identifying an appropriate occupational exposure limit (OEL) for beryllium: Data gaps and current research initiatives. App. Occup. Environ. Hyg. 16:527–538 ( 2001).
  • Kent, M.S., T.G. Robins, and A.K. Madl: Is total mass or mass of alveolar-deposited airborne particles of beryllium a better predictor of disease? A preliminary study of a beryllium processing facility. App. Occup. Environ. Hyg. 16:539–558 ( 2001).
  • McCawley, M.A., M.S. Kent, and M.T. Berakis: Ultrafine beryllium number concentration as a possible metric for chronic beryllium disease risk. App. Occup. Environ. Hyg. 16:631–638 ( 2001).
  • Kelleher, P.C., J.W. Martyny, M.M. Mroz, et al.: Beryllium particulate exposure and disease relations in a beryllium machining plant. J. Occup. Environ. Med. 43:238–249 ( 2001).
  • Muller, C., B. Mazer, F. Salehi, et al.: Urinary levels, tissue concentrations and lung inflammation after nose-only exposure to three different chemical forms of beryllium. J. Appl. Toxicol. 30:411–415 ( 2010).
  • Muller, C., F. Salehi, B. Mazer, et al.: Immunotoxicity of 3 chemical forms of beryllium following inhalation exposure. Int. J. Toxicol. 30:538–545 ( 2011).
  • Skaugset, N.P., D.G. Ellingsen, K. Dahl, et al.: Occupational exposure to beryllium in primary aluminum production. J. Environ. Monit. 14:353–359 ( 2012).
  • Stefaniak, A.B., G.A. Day, M.D. Hoover, P.N. Breysse, and R.C. Scripsick: Differences in dissolution behavior in a phagolysosomal stimulant fluid for single-constituent and multi-constituent materials associated with beryllium sensitization and chronic beryllium disease. Toxicol. In Vitro 20:82–95 ( 2006).
  • Bauer, E., H. Diyabalanage, N.N. Sauer, and T.M. McCleskey: Protein and ligand enhanced dissolution of BeO at pH 7. Inorg. Chim. Acta 361:3075–3078 ( 2008).
  • Scott, B.L., T.M. McCleskey, A. Chaudhary, E. Hong-Geller, and S. Gnanakaran: The bioinorganic chemistry and assiociated immunology of chronic beryllium disease. Chem. Commun. 25:2837–2847 ( 2008).
  • Eidson, A.F., A. Taya, G.L. Finch, M.D. Hoover, and C. Cook: Dosimetry of beryllium in cultured canine pulmonary alveolar macrophages. J. Toxicol. Environ. Health 34:433–448 ( 1991).
  • Profumo, A., G. Spini, L. Cucca, and M. Pesavento: Determination of inorganic beryllium species in the particulate matter of emissions and working areas. Talanta 57:929–934 ( 2002).
  • Harper, M., and M. Demange: Concerning sampler wall deposits in the chemical analysis of airborne metals. J. Occup. Environ. Hyg. 4:D81–D86 ( 2007).
  • Fabriès, J.F., P. Görner, E. Kauffer, R. Wrobel, and J.C. Vigneron: Personal thoracic CIP10-T sampler and its static version CATHIA-T. Ann. Occup. Hyg. 42:453–465 ( 1998).
  • Görner, P., R. Wrobel, V. Micka, V. Skoda, J. Denis, and J.F. Fabriès: Study of fifteen respirable aerosol samplers used in occupational hygiene. Ann. Occup. Hyg. 45:43–54 ( 2001).
  • Institut National de Recherche et de Sécurité (INRS): Échantillonnage statique d'un aérosol par le dispositif CATHIA [Aerosol static sampling using CATHIA sampling device] (Fiche H5). In Métrologie des Polluants, Évaluation de l'Exposition Professionnelle, Méthodes de Prélèvement et d'Analyse de l'Air (MétroPol). Paris: INRS, 2002.
  • Rains, T.C., C.D. Olsen, R.A. Velapoldi, S.A. Wicks, O. Menis, and J.K. Taylor: Preparation of reference materials for stationery source emission analysis – Beryllium (NBS 74–439). Washington D.C.: National Bureau of Standards, 1974.
  • Agrawal, A., J. Cronin, J. Tonazzi, et al.: Validation of a standardized portable fluorescence method for determining trace beryllium in workplace air and wipe samples. J. Environ. Monit. 8:619–624 ( 2006).
  • Goldcamp, M.J., D.M. Goldcamp, K. Ashley, et al.: Extraction of beryllium from refractory beryllium oxide with dilute ammonium bifluoride and determination by fluorescence: A multiparameter performance evaluation. J. Occup. Environ. Hyg. 6:735–744 ( 2009).
  • Ashley, K., T.J. Wise, D. Marlow, et al.: Trace Beryllium determination in polyvinyl alcohol wipes by extraction and fluorescence detection: interlaboratory analysis. Anal. Meth. 3:1906–1909 ( 2011).
  • Ashley, K.: Measurement of ultra-trace beryllium in occupational hygiene samples by extraction and fluorescence detection. J. Chem. Health Safety 18:26–33 ( 2011).
  • Agrawal, A., J.P. Cronin, A. Agrawal, et al.: Extraction and optical fluorescence method for the measurement of trace beryllium in soils. Environ. Sci. Technol. 42:2066–2071 ( 2008).
  • European Committee for Standardization (CEN): Workplace exposure - Procedures for measuring metals and metalloids in airborne particles - Requirements and test methods (EN 13890). [Standard] Brussels: CEN, 2009.
  • Vincent, R., T. Kauppinen, J. Toikkanen, D. Pedersen, R. Young, and M. Kogevinas: CAREX, Système international d'information sur l'exposition professionnelle aux cancérogènes en Europe; Résultats des estimations pour la France pendant les années 1990–1993. Cahiers de notes documentaires - Hygiène et sécurité du travail 176, ND 2113–176–99:49–59 ( 1999).
  • Vincent, R., J. Catani, Y. Créau, et al.: Occupational exposure to beryllium in French enterprises: A survey of airborne exposure and surface levels. Ann. Occup. Hyg. 53:363–372 ( 2009).
  • Stefaniak, A.B., M.D. Hoover, G.A. Day, et al.: Characterisation of physicochemical properties of beryllium aerosols associated with prevalence of chronic beryllium disease. J. Environ. Monit. 6:523–532 ( 2004).
  • Ünlü, N., and M.G. Drouet: Comparison of salt-free aluminum dross treatment processes. Resour. Conserv. Recycl. 36:61–72 ( 2002).
  • Dufresne, A., C. Dion, S. Viau, Y. Cloutier, and G. Perrault: Beryllium aerosol characteristics in the magnesium and aluminum transformation industry in Quebec: A comparison of four different sampling methodologies. J. Occup. Environ. Hyg. 6:687–697 ( 2009).
  • Rouleau, M., C. Dion, P. Plamondon, G. Kennedy, G. L'espérance, and J. Zayed: Physical and chemical characterisation of beryllium particles from several workplaces in Québec, Canada—Part A: Determining methods for the analysis of low levels of beryllium. J. Toxicol. Environ. Health 68:1889–1905 ( 2005).
  • Rouleau, M., C. Dion, P. Plamondon, G. Kennedy, G. L'espérance, and J. Zayed: Physical and chemical characterisation of beryllium particles from several workplaces in Québec, Canada— Part B: Time-of-flight secondary-ion mass spectroscopy. J. Toxicol. Environ. Health 68: 1907–1916 ( 2005).
  • Taiwo, O.A., M.D. Slade, L.F. Cantley, et al.: Beryllium sensitization in aluminum smelter workers. J. Occup. Environ. Med. 50:157–162 ( 2008) .
  • Dobbs, C.L., and S.J. Lindsay: Concentration of beryllium salts in aluminum reduction plant bath. International Beryllium Research Conference, Philadelphia, October 16–19, 2007.
  • L'vov, B.V., L.K. Polzik, S. Weinbruch, D.G. Ellingsen, and Y. Thomassen: Theoretical aspects of fluoride air contaminant formation in aluminum smelter potrooms. J. Environ. Monit. 7:425–430 ( 2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.