361
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Quantification of nanoparticle release from polymer nanocomposite coatings due to environmental stressing

, , , &

References

  • Miller, D., R. Chowdhury, and M. Greene: “2005–2007 Rdesidential Fire Loss Estimates.” Available at http://www.cpsc.gov/library/fire07.pdf (2010).
  • Ahrens, M.: Home Fires That Began With Upholstered Furniture. Quincy, MA: National Fire Protection Association, 2011.
  • Evarts, B.: Home Fires That Began With Mattresses and Bedding. Quincy, MA: National Fire Protection Association, 2011.
  • Blum, A., and B. Ames: Flame-retardant additives as possible cancer hazards. Science 195(4273):17–23 (1977).
  • Birnbaum, L.S., and D.F. Staskal: Brominated flame retardants: Cause for concern? Environ. Health Perspect. 112(1):9–17 (2004).
  • Cordner, A, M. Mulcahy, and P. Brown: Chemical regulation on fire: Rapid policy advances on flame retardants. Environ. Sci. Technol. (2013).
  • Stapleton, H.M., S. Klosterhaus, S. Eagle, et al.: Detection of organophosphate flame retardants in furniture foam and U.S. house dust. Environ. Sci. Technol. 43(19):7490–7495 (2009).
  • Gilman, J.W., T. Kashiwagi, and J.D. Lichtenhan: Nanocomposites: A revolutionary new flame retardant approach. Sampe J. 33(4):40–46 (1997).
  • Zammarano, M., R.H. Kramer, R. Harris, et al.: Flammability reduction of flexible polyurethane foams via carbon nanofiber network formation. Polym. Adv. Technol. 19(6):588–595 (2008).
  • Alexandre, M., and P. Dubois: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R-Rep. 28(1–2):1–63 (2000).
  • Kashiwagi, T., E. Grulke, J. Hilding, R. Harris, W. Awad, and J. Douglas: Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromolec. Rapid Commun. 23(13):761–765 (2002).
  • Liu, Y.-L., C.-Y. Hsu, W.-L. Wei, and R.-J. Jeng: Preparation and thermal properties of epoxy-silica nanocomposites from nanoscale colloidal silica. Polymer 44(18):5159–5167 (2003).
  • Kashiwagi, T., A.B. Morgan, J.M. Antonucci, et al.: Thermal and flammability properties of a silica–poly(methylmethacrylate) nanocomposite. J. Appl. Polym. Sci. 89(8):2072–2078 (2003).
  • Zhu, H.F., Q.L. Zhu, J.A. Li, K. Tao, L.X. Xue, and Q. Yan: Synergistic effect between expandable graphite and ammonium polyphosphate on flame retarded polylactide. Polym. Degrad. Stabil. 96(2):183–189 (2011).
  • Becker, C.M., A.D. Gabbardo, F. Wypych, and S.C. Amico: Mechanical and flame-retardant properties of epoxy/Mg-Al LDH composites. Compos. Part A-Appl. Sci. Manufact. 42(2):196–202 (2011).
  • Kashiwagi, T, F.M. Du, J.F. Douglas, K.I. Winey, R.H. Harris, and J.R. Shields: Nanoparticle networks reduce the flammability of polymer nanocomposites. Nature Mater.4(12):928–933 (2005).
  • Zammarano, M., R.H. Krämer, R. Harris, et al.: Flammability reduction of flexible polyurethane foams via carbon nanofiber network formation. Polym. Adv. Technol. 19(6):588–595 (2008).
  • Kim, Y.S., R. Davis, A.A. Cain, and J.C. Grunlan: Development of layer-by-layer assembled carbon nanofiber-filled coatings to reduce polyurethane foam flammability. Polymer 52(13):2847–2855 (2011).
  • Kim, Y.S., Y.-C. Li, W.M. Pitts, M. Werrel, and R.D. Davis: Rapid growing clay coatings to reduce the fire threat of furniture. ACS Appl. Mater. Interf. 6(3):2146–2152 (2014).
  • Li, Y.C., S. Mannen, J. Schulz, and J.C. Grunlan: Growth and fire protection behavior of POSS-based multilayer thin films. J. Mater. Chem. 21(9):3060–3069 (2011).
  • Carosio, F., J. Alongi, and G. Malucelli: alpha-Zirconium phosphate-based nanoarchitectures on polyester fabrics through layer-by-layer assembly. J. Mater. Chem. 21(28):10370–10376 (2011).
  • Laufer, G., F. Carosio, R. Martinez, G. Camino, and J.C. Grunlan: Growth and fire resistance of colloidal silica-polyelectrolyte thin film assemblies. J. Colloid Interf. Sci. 356(1):69–77 (2011).
  • Kim, Y.S., R. Harris, and R. Davis: Innovative approach to rapid growth of highly clay-filled coatings on porous polyurethane foam. ACS Macro Lett. 1(7):820–824 (2012).
  • Li, Y.C., J. Schulz, S. Mannen, et al.: Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric. ACS Nano 4(6):3325–3337 (2010).
  • Li, Y.-C., Y.S. Kim, J. Shields, and R. Davis: Controlling polyurethane foam flammability and mechanical behaviour by tailoring the composition of clay-based multilayer nanocoatings. J. Mater. Chem. A 1(41):12987–12997 (2013).
  • Alongi, J., F. Carosio, and G. Malucelli: Influence of ammonium polyphosphate-/poly(acrylic acid)-based layer by layer architectures on the char formation in cotton, polyester and their blends. Polym. Degrad. Stabil. 97(9):1644–1653 (2012).
  • Laachachi, A., V. Ball, K. Apaydin, V. Toniazzo, and D. Ruch: Diffusion of polyphosphates into (poly(allylamine)-montmorillonite) multilayer films: flame retardant-intumescent films with improved oxygen barrier. Langmuir 27(22):13879–13887 (2011).
  • Apaydin, K., A. Laachachi, V. Ball, et al.: Polyallylamine–montmorillonite as super flame retardant coating assemblies by layer-by layer deposition on polyamide. Polym. Degrad. Stabil. 98(2):627–634 (2013).
  • Carosio, F., A. Di Blasio, J. Alongi, and G. Malucelli: Layer by layer nanoarchitectures for the surface protection of polycarbonate. Eur. Polym. J. 49(2):397–404 (2013).
  • Laufer, G., C. Kirkland, A.A. Cain, and J.C. Grunlan: Clay–chitosan nanobrick walls: Completely renewable gas barrier and flame-retardant nanocoatings. ACS Appl. Mater. Interf. 4(3):1643–1649 (2012).
  • Kim, Y.S., and R. Davis: Multi-walled carbon nanotube layer-by-layer coatings with a trilayer structure to reduce foam flammability. Thin Solid Films 550(0):184–189 (2014).
  • Li, Y.-C., S. Mannen, J. Schulz, and J.C. Grunlan: Growth and fire protection behavior of POSS-based multilayer thin films. J. Mater. Chem. 21(9):3060–3069 (2011).
  • Alvarez, P.J.J., V. Colvin, J. Lead, and V. Stone: Research priorities to advance eco-responsible nanotechnology. ACS Nano 3(7):1616–1619 (2009).
  • Sharifi, S., S. Behzadi, S. Laurent, M.L. Forrest, P. Stroeve, and M. Mahmoudi: Toxicity of nanomaterials. Chem. Soc. Rev. 41(6):2323–2343 (2012).
  • Som, C., M. Berges, Q. Chaudhry, et al.: The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269(2–3):160–169 (2010).
  • Benn, T.M., and P. Westerhoff: Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 42(11):4133–4139 (2008).
  • Nowack, B., J.F. Ranville, S. Diamond, et al.: Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ. Toxicol. Chem. 31(1):50–59 (2012).
  • Gottschalk, F., and B. Nowack: The release of engineered nanomaterials to the environment. J. Environ. Monitor. 13(5):1145–1155 (2011).
  • Thomas, T.A., and P.M. Brundage: Quantitative Assessment of Potential Health Effects From the Use of Fire Retardant (FR) Chemicals in Matresses. Bethesda, MD: U.S. Consumer Prodect Safety Commission, 2006.
  • Chiang, I.W., B.E. Brinson, A.Y. Huang, et al.: Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process). J. Phys. Chem. B 105(35):8297–8301 (2001).
  • Yu, J.R., N. Grossiord, C.E. Koning, and J. Loos: Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 45(3):618–623 (2007).
  • Huang, X.Y., R.S. McLean, and M. Zheng: High-resolution length sorting and purification of DNA-wrapped carbon nanotubes by size-exclusion chromatography. Analyt. Chem. 77(19):6225–6228 (2005).
  • Sun, X., S. Zaric, D. Daranciang, et al.: Optical properties of ultrashort semiconducting single-walled carbon nanotube capsules down to sub-10 nm. J. Amer. Chem. Soc. 130(20):6551–6555 (2008).
  • Khripin, C.Y., X.M. Tu, J. Howarter, J. Fagan, and M. Zheng: Concentration measurement of length-fractionated colloidal single-wall carbon nanotubes. Analyt. Chem. 84(20):8733–8739 (2012).
  • Jiang, L.Q., L. Gao, and J. Sun: Production of aqueous colloidal dispersions of carbon nanotubes. J. Colloid Interf. Sci. 260(1):89–94 (2003).
  • Haggenmueller, R., S.S. Rahatekar, J.A. Fagan, et al.: Comparison of the quality of aqueous dispersions of single wall carbon nanotubes using surfactants and biomolecules. Langmuir 24(9):5070–5078 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.