490
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Multi-element analysis of airborne particulate matter from different work tasks during subsea tunnel rehabilitation work

, , , &

References

  • Bakke, B., P. Stewart, B. Ulvestad, and W. Eduard: Dust and gas exposure in tunnel construction work. AIHAJ 62(4):457–465 (2001).
  • Bakke, B, B. Ulvestad, Y. Thomassen, T. Woldbæk, and D.G. Ellingsen: Characterization of occupational exposure to air contaminants in modern tunnelling operations. Ann. Occup. Hyg. 58(7):818–829 (2014).
  • Arcangeli, G., V. Cupelli, M. Montalti, M. Pristera, A. Baldasseroni, and G. Giuliano: Respiratory risks in tunnel construction workers. Int. J. Immunopathol. Pharmacol. 17(2 Suppl):91–96 (2004).
  • Oliver, L.C., and H. Miracle-McMahill: Airway disease in highway and tunnel construction workers exposed to silica. Am. J. Ind. Med. 49(12):983–996 (2006).
  • Blute, N.A., S.R. Woskie, and C.A. Greenspan: Exposure characterization for highway construction. Part I: Cut and cover and tunnel finish stages. Appl. Occup. Environ. Hyg. 14(9):632–641 (1999).
  • Ulvestad, B., B. Bakke, E. Melbostad, P. Fuglerud, J. Kongerud, and M.B. Lund: Increased risk of obstructive pulmonary disease in tunnel workers. Thorax 55(4):277–282 (2000).
  • Bakke, B., B. Ulvestad, P. Stewart, and W. Eduard: Cumulative exposure to dust and gases as determinants of lung function decline in tunnel construction workers. Occup. Environ. Med. 61(3):262–269 (2004).
  • Ulvestad, B., B. Bakke, W. Eduard, J. Kongerud, and M.B. Lund: Cumulative exposure to dust causes accelerated decline in lung function in tunnel workers. Occup. Environ. Med. 58(10):663–669 (2001).
  • Ulvestad, B., M.B. Lund, B. Bakke, P.G. Djupesland, J. Kongerud, and J. Boe: Gas and dust exposure in underground construction is associated with signs of airway inflammation. Eur. Resp. J. 17(3):416–421 (2001).
  • Ulvestad, B., M.B. Lund, B. Bakke, Y. Thomassen, and D.G. Ellingsen: Short-term lung function decline in tunnel construction workers. Occup. Environ. Med. 72(2):108–113 (2015).
  • Hilt, B., T. Qvenild, J. Holme, K. Svendsen, and B. Ulvestad: Increase in interleukin-6 and fibrinogen after exposure to dust in tunnel construction workers. Occup. Environ. Med. 59(1):9–12 (2002).
  • Klemm, R.J., E.L. Thomas, and R.E. Wyzga: The impact of frequency and duration of air quality monitoring: Atlanta, GA, data modeling of air pollution and mortality. J. Air Waste Manage. Assoc. 61(11):1281–1291 (2011).
  • Lippmann, M., K. Ito, J.S. Hwang, P. Maciejczyk, and L.C. Chen: Cardiovascular effects of nickel in ambient air. Environ. Health Perspect. 114(11):1662–1669 (2006).
  • Spira-Cohen, A., L.C. Chen, M. Kendall, R. Lall, and G.D. Thurston: Personal exposures to traffic-related air pollution and acute respiratory health among Bronx schoolchildren with asthma. Environ. Health Perspect. 119(4):559–565 (2011).
  • Lee, J.C., Y.O. Son, P. Pratheeshkumar, and X.L. Shi: Oxidative stress and metal carcinogenesis. Free Radic. Biol. Med. 53(4):742–757 (2012).
  • Wang, S.W., and X.L. Shi: Molecular mechanisms of metal toxicity and carcinogenesis. Mol. Cell. Biochem. 222(1–2):3–9 (2001).
  • Burnett, R.T., J. Brook, T. Dann, et al.: Association between particulate- and gas-phase components of urban air pollution and daily mortality in eight Canadian cities. Inhal. Toxicol. 12:15–39 (2000).
  • Ostro, B., W.Y. Feng, R. Broadwin, S. Green, and M. Lipsett: The effects of components of fine particulate air pollution on mortality in California: Results from CALFINE. Environ. Health Perspect. 115(1):13–19 (2007).
  • Franklin, M., P. Koutrakis, and J. Schwartz: The role of particle composition on the association between PM2.5 and mortality. Epidemiology 19(5):680–689 (2008).
  • Patel, M.M., L. Hoepner, R. Garfinkel, et al.: Ambient metals, elemental carbon, and wheeze and cough in New York City children through 24 months of age. Am. J. Respir. Crit. Care Med. 180(11):1107–1113 (2009).
  • Bell, M.L., K. Ebisu, B.P. Leaderer, et al.: Associations of PM2.5 constituents and sources with hospital admissions: analysis of four counties in Connecticut and Massachusetts (USA) for persons ≥ 65 years of age. Environ. Health Perspect. 122(2):138–144 (2014).
  • Bell, M.L., K. Ebisu, R.D. Peng, J.M. Samet, and F. Dominici: Hospital Admissions and Chemical Composition of Fine Particle Air Pollution. Am. J. Respir. Crit. Care Med. 179(12):1115–1120 (2009).
  • Huang, Y.C.T., A.J. Ghio, J. Stonehuerner, et al.: The role of soluble components in ambient fine particles-induced changes in human lungs and blood. Inhal. Toxicol. 15(4):327–342 (2003).
  • Saldiva, P.H.N., R.W. Clarke, B.A. Coull, et al.: Lung inflammation induced by concentrated ambient air particles is related to particle composition. Am. J. Respir. Crit. Care Med. 165(12):1610–1617 (2002).
  • Gurgueira, S.A., J. Lawrence, B. Coull, G.G.K. Murthy, and B. Gonzalez-Flecha: Rapid increases in the steady-state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environ. Health Perspect. 110(8):749–755 (2002).
  • Harrington, A.D., A. Smirnov, S.E. Tsirka, and M.A.A. Schoonen: Metal-sulfide mineral ores, Fenton chemistry and disease - Particle induced inflammatory stress response in lung cells. Int. J. Hyg. Environ. Health. 218(1): 19–27 (2015).
  • Coelho, P., S. Costa, S. Silva, et al.: Metal(loid) levels in biological matrices from human populations exposed to mining contamination-Panasqueira mine (Portugal). J. Toxicol. Env. Health Part A 75(13–15):893–908 (2012).
  • Weiss, T., B. Pesch, A. Lotz, et al.: Levels and predictors of airborne and internal exposure to chromium and nickel among welders-Results of the WELDOX study. Int. J. Hyg. Environ. Health 216(2):175–183 (2013).
  • Scheepers, P.T.J., G.A.H. Heussen, P.G.M. Peer, K. Verbist, R. Anzion, and J. Willems: Characterisation of exposure to total and hexavalent chromium of welders using biological monitoring. Toxicol. Lett. 178(3):185–190 (2008).
  • National Institute for Occupational Safety and Health (NIOSH): “Silica, crystalline, by XRD (filter redeposition) 7500. [Method]. In: NIOSH Manual of Analytical Methods (NMAM).” Available at http://www.cdc.gov/niosh/docs/2003-154/pdfs/7500.pdf (accessed 16 November, 2015).
  • IUPAC (International Union of Pure and Applied Chemistry): Nomenclature, symbols, units and their usage in spectrochemical analysis - II. Data interpretation. Spectrochim. Acta B 33(6):242–245. (1978).
  • Lubin, J.H., J.S. Colt, D. Camann, et al.: Epidemiologic evaluation of measurement data in the presence of detection limits. Environ. Health Perspect. 112(17):1691–1696 (2004).
  • ACGIH (American Conference of Governmental Industrial Hygienists): 2016 TLVs and BEIs—Threshold Limit Values for Chemical Substances and Physical Agents; Biological Exposure Indices. Cincinnati, OH: ACGIH, 2016.
  • Roach, S.A., and S.M. Rappaport: But they are not thresholds: a critical analysis of the documentation of Threshold Limit Values. Am. J. Ind. Med. 17(6):727–753 (1990).
  • Bakke, B., P. Stewart, and W. Eduard: Determinants of dust exposure in tunnel construction work. Appl. Occup. Environ. Hyg. 17(11):783–796 (2002).
  • Fell, A.K.M., H. Noto, M. Skogstad, et al.: A cross-shift study of lung function, exhaled nitric oxide and inflammatory markers in blood in Norwegian cement production workers. Occup. Environ. Med. 68(11):799–805 (2011).
  • Sommar, J.N., M.K. Svensson, B.M. Björ, et al.: End-stage renal disease and low level exposure to lead, cadmium and mercury; a population-based, prospective nested case-referent study in Sweden. Environ. Health 12:10 (2013).
  • Dutta, K., P. Prasad, and D. Sinha: Chronic low level arsenic exposure evokes inflammatory responses and DNA damage. Int. J. Hyg. Environ. Health 218(6):564–574 (2015).
  • Callan, A.C., A. Devine, L. Qi, J.C. Ng, and A.L. Hinwood: Investigation of the relationship between low environmental exposure to metals and bone mineral density, bone resorption and renal function. Int. J. Hyg. Environ. Health 218(5):444–451 (2015).
  • Allen, A.G., E. Nemitz, J.P. Shi, R.M. Harrison, and J.C. Greenwood: Size distributions of trace metals in atmospheric aerosols in the United Kingdom. Atmos. Environ. 35(27):4581–4591 (2001).
  • Masiol, M., S. Squizzato, D. Ceccato, and B. Pavoni: The size distribution of chemical elements of atmospheric aerosol at a semi-rural coastal site in Venice (Italy). The role of atmospheric circulation. Chemosphere 119:400–406 (2015).
  • Samara, C., and D. Voutsa: Size distribution of airborne particulate matter and associated heavy metals in the roadside environment. Chemosphere 59(8):1197–1206 (2005).
  • NIOSH (National Institute for Occupational Safety and Health): “Hazard Review: Health Effects of Occupational Exposure to Asphalt”, M.A. Butler, G. Burr, D. Dankovic, et al. (eds.). Washington, D.C.: U.S. Department of Health and Human Services, 2001. pp. 1–150.
  • Freund, A., N. Zuckerman, L. Baum, and D. Milek: Submicron particle monitoring of paving and related road construction operations. J. Occup. Environ. Hyg. 9(5):298–307 (2012).
  • Ulvestad, B., B.G. Randem, S. Hetland, G. Sigurdardottir, E. Johannessen, and T. Lyberg: Exposure, lung function decline and systemic inflammatory response in asphalt workers. Scand. J. Work Environ. Health 33(2):114–121 (2007).
  • Randem, B.G., B. Ulvestad, I. Burstyn, and J. Kongerud: Respiratory symptoms and airflow limitation in asphalt workers. Occup. Environ. Med. 61(4):367–369 (2004).
  • Randem, B.G., I. Burstyn, S. Langård, et al.: Cancer incidence of Nordic asphalt workers. Scand. J. Work Environ. Health 30(5):350–355 (2004).
  • Randem, B.G., S. Langård, J. Kongerud, et al.: Mortality from non-malignant diseases among male Norwegian asphalt workers. Am. J. Ind. Med. 43(1):96–103 (2003).
  • Health and Safety Laboratory: “Investigation of potential exposure to carcinogens and respiratory sensitisers during thermal processing of plastics”, J. Unwin, C. Keen, and M. Coldwell (eds.). Sudbury, UK: HSE (Health and Safety Executive), 2010. pp. 1–41.
  • Sandstead, H.H.: Zinc A2. In Handbook on the Toxicology of Metals (Fourth Edition), G.F. Nordberg, B.A. Nrdberg, M. Fowler (eds.). San Diego: Academic Press, 2015. pp. 1369–1385.
  • Langård, S., and M. Costa: Chromium. In Handbook on the Toxicology of Metals (Fourth Edition), G.F. Nordberg, B.A. Fowler, M. Nordberg (eds.). San Diego: Academic Press, 2015. pp. 717–742.
  • IARC (International Agency for Research on Cancer): “List of Classifications, Volumes 1-113.” Available at http://monographs.iarc.fr/ENG/Classification/List_of_Classifications_Vol1-113.pdf (accessed August 15, 2015).
  • Amato, F., M. Pandolfi, M. Viana, X. Querol, A. Alastuey, and T. Moreno: Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmos. Environ. 43(9):1650–1659 (2009).
  • Moreno, T., A. Karanasiou, F. Amato, et al.: Daily and hourly sourcing of metallic and mineral dust in urban air contaminated by traffic and coal-burning emissions. Atmos. Environ. 68:33–44 (2013).
  • Niu, L.L., H.J. Ye, C. Xu, Y.J. Yao, and W.P. Liu: Highly time- and size-resolved fingerprint analysis and risk assessment of airborne elements in a megacity in the Yangtze River Delta, China. Chemosphere 119:112–121 (2015).
  • Basagana, X., B. Jacquemin, A. Karanasiou, et al.: Short-term effects of particulate matter constituents on daily hospitalizations and mortality in five South-European cities: Results from the MED-PARTICLES project. Environ. Int. 75:151–158 (2015).
  • Zhou, J.A., K. Ito, R. Lall, M. Lippmann, and G. Thurston: Time-Series Analysis of Mortality Effects of Fine Particulate Matter Components in Detroit and Seattle. Environ. Health Perspect. 119(4):461–466 (2011).
  • Cobbina, S.J., Y. Chen, Z. Zhou, et al.: Low concentration toxic metal mixture interactions: Effects on essential and non-essential metals in brain, liver, and kidneys of mice on sub-chronic exposure. Chemosphere 132: 79–86 (2015).
  • Hengstler, J.G., U. Bolm-Audorff, A. Faldum, et al.: Occupational exposure to heavy metals: DNA damage induction and DNA repair inhibition prove co-exposures to cadmium, cobalt and lead as more dangerous than hitherto expected. Carcinogenesis 24(1):63–73 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.