718
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Understanding workers' exposure: Systematic review and data-analysis of emission potential for NOAA

, , , &

References

  • ISO: Nanotechnologies — Occupational risk management applied to engineered nanomaterials – Part 1: Principles and approaches. ISO/TS 12901–1 (2012).
  • Brouwer, D.: Control banding approaches for nanomaterials. Ann. Occup. Hyg. 56(5):506–514 (2012).
  • Schneider, T., D. Brouwer, I. Koponen, et al.: Conceptual model for assessment of inhalation exposure to manufactured nanoparticles. J. Expos. Sci. Environ. Epidemiol. 21(5):450–463 (2011).
  • Van Duuren-Stuurman, B., S. Vink, K. J. M. Verbist, et al.: Stoffenmanager Nano version 1.0: a web-based tool for risk prioritization of airborne manufactured nano objects. Ann. Occup. Hyg. 56(5):525–541 (2012).
  • Zalk, D. M., S. Y. Paik, and P. Swuste: Evaluating the control banding nanotool: a qualitative risk assessment method for controlling nanoparticle exposures. J. Nanopart. Res. 11:1685–1704 (2009).
  • Riediker, M., M. Schubauer Berigan, D. Brouwer, et al.: A road map toward a globally harmonized approach for occupational health surveillance and epidemiology in nanomaterial workers. J. Occup. Environ. Med. 54(10):1214–1223 (2012).
  • Kuhlbusch, T., C. Asbach, H. Fissan, D. Gofhler, and M. Stintz: Nanoparticle exposure at nanotechnology workplaces: a review. Part. Fibre Toxicol. 8:22 (2011).
  • Clark, K., van Tongeren, M., Christensen, F. M., et al.: Limitations and information needs for engineered nanomaterial-Specific exposure estimation and scenarios: Recommendations for improved reporting practices. J. Nanopart. Res. 14(9) (2012).
  • Losert, S., N. Von Goetz, C. Bekker, et al.: Human exposure to conventional and nanoparticle-containing sprays - A critical review. Environ. Sci. Technol. 48(10):5366–5378 (2014).
  • Virji, M. A., and A. B. Stefaniak: A review of engineered nanomaterial manufacturing processes and associated exposures. Comprehen. Mater. Process. 8:103–125 (2014).
  • Invernizzi, N.: Nanotechnology between the lab and the shop floor: What are the effects on labor? J. Nanopart. Res. 13(6):2249–2268 (2011).
  • Brouwer, D., E. Kuijpers, C. Bekker, C. Asbach, and T.A.J. Kuhlbusch: Field and laboratory measurements related to occupational and consumer exposures. In Safety of Nanomaterials Along their Lifecycle: Release, Exposure, and Human Hazards, W. Wohlleben, T.A.J. Kuhlbusch, J. Schnekenburger, and C.-M. Lehr (eds.): Boca Raton, FL: CRC Press, 2015, Ch. 12.
  • Cornelissen, R., F. Jongeneelen, and F. van Broekhuizen: Guidance working safely with nanomaterials and products, the guide for employers and employees. Document 1113. (2011).
  • Kristensen, H.V., K.A. Jensen, and I.K. Koponen: Nanopartikler i arbejdsmiljøet - Viden og inspiration om handtering af nanomaterialer [Nanoparticles in occupational environement - Knowledge and inspiration on the handling of nanomaterials]. Copenhagen: Teknologisk Institut, Center for Arbejdsliv, 2010.
  • Fransman, W., M. Van Tongeren, J. W. Cherrie, et al.: Advanced reach tool (ART): Development of the mechanistic model. Ann. Occup. Hyg. 55(9):957–979 (2011).
  • Delmaar, J.E., and H.J. Bremmer: The ConsExpo spray model. Modeling and experimental validation of the inhalation exposure of consumers to aerosols from spray cans and trigger sprays. RIVM report 320104005 (2009).
  • Schneider, T., and K.A. Jensen: Relevance of aerosol dynamics and dustiness for personal exposure to manufactured nanoparticles. J. Nanopart. Res. 11:1637–1650 (2009).
  • Levin, M., E. Rojas, E. Vanhala, et al.: Influence of relative humidity and physical load during storage on dustiness of inorganic nanomaterials: implications for testing and risk assessment. J. Nanopart. Res. 17(8) (2015).
  • Marquart, H., H. Heussen, M. Le Feber, et al.: ‘Stoffenmanager’, a web-based control banding tool using an exposure process model. Ann. Occup. Hyg. 52(6):429–441 (2008).
  • ISO: Nanotechnologies – Occupational risk management applied to engineered nanomaterials – Part 2: Use of the control banding approach. TS 12901–2 (2014).
  • Leppänen, M., J. Lyyränen, M. Järvelä, et al.: Exposure to CeO2 nanoparticles during flame spray process. Nanotoxicology 6(6):643–651 (2012).
  • Walser, T., S. Hellweg, R. Juraske, N.A. Luechinger, J. Wang, and M. Fierz: Exposure to engineered nanoparticles: Model and measurements for accident situations in laboratories. Sci. Total Environ. 420:119–126 (2012).
  • Lee, J. H., M. Kwon, J.H. Ji, et al.: Exposure assessment of workplaces manufacturing nanosized TiO2 and silver. Inhal. Toxicol. 23(4):226–236 (2011).
  • Demou, E., W. Stark, and S. Hellweg: Particle emission and exposure during nanoparticle synthesis in research laboratories. Ann. Occup. Hyg. 53(8):829–838 (2009).
  • Mäkelä, J.M., M. Aromaa, A. Rostedt, et al.: Liquid flame spray for generating metal and metal oxide nanoparticle test aerosol. Hum. Exper. Toxicol. 28(6–7):421–431 (2009).
  • Health and Safety Executive: Nanoparticles: An Occupational Hygiene Review, by R.J. Aitken, K.S. Creely, and C.L. Tran (Research Report 274). Health and Safety Executive, 2004.
  • Methner, M., L. Hodson, A. Dames, and C. Geraci: Nanoparticle Emission Assessment Technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials–Part B: Results from 12 field studies. J. Occup. Environ. Hyg. 7(1545–9632; 1545–9624; 3):163–176 (2010).
  • Tsai, S.J., M. Hofmann, M. Hallock, E. Ada, J. Kong, and M. Ellenbecker: Characterization and evaluation of nanoparticle release during the synthesis of single-walled and multiwalled carbon nanotubes by chemical vapor deposition. Environ. Sci. Technol. 43(15):6017–6023 (2009).
  • Ham, S., C. Yoon, E. Lee, et al.: Task-based exposure assessment of nanoparticles in the workplace. J. Nanopart. Res. 14(9) (2012).
  • Park, J.: Characterization of exposure to silver nanoparticles in a manufacturing facility. J. Nanopart. Res. 11(7):1705–1712 (2009).
  • Bekker, C., E. Kuijpers, D. Brouwer, R. Vermeulen, and W. Fransman: Occupational exposure to nano-objects and their agglomerates and aggregates across various life cycle stages; a broad-scale exposure study. Ann. Occup. Hyg. 59(6):681–704 (2015).
  • Evans, D.E., B.K. Ku, M.E. Birch, and K.H. Dunn: Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling. Ann. Occup. Hyg. 54(5):514–531 (2010).
  • Lee, J.H., S. -. Lee, G.N. Bae, et al.: Exposure assessment of carbon nanotube manufacturing workplaces. Inhal. Toxicol. 22(5):369–381 (2010).
  • Zimmermann, E., S. Derrough, D. Locatelli, et al.: Results of potential exposure assessments during the maintenance and cleanout of deposition equipment. J. Nanopart. Res. 14:1209 (2012).
  • Dahm, M.M., D.E. Evans, M.K. Schubauer-Berigan, M.E. Birch, and J.A. Deddens: Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers: Mobile direct-reading sampling. Ann. Occup. Hyg. 57(3):328–344 (2013).
  • Kuijpers, E., C. Bekker, W. Fransman, et al.: Occupational exposure to multi-walled carbon nanotubes during commercial production synthesis and handling. Ann. Hyg. 60(3):305–317 (2015).
  • Van Tongeren, M., W. Fransman, S. Spankie, et al.: Advanced REACH Tool: Development and application of the substance emission potential modifying factor. Ann. Occup. Hyg. 55(9):980–988 (2011).
  • Tielemans, E., T. Schneider, H. Goede, et al.: Conceptual model for assessment of inhalation exposure: Defining modifying factors. Ann. Occup. Hyg. 52(7):577–586 (2008).
  • Tsai, C. -., G.-. Lin, C.-. Liu, C.-. He, and C.-. Chen: Characteristic of nanoparticles generated from different nano-powders by using different dispersion methods. J.f Nanopart. Res. 14:777 (2012).
  • Burdett, G., D. Bard, A. Kelly, and A. Thorpe: The effect of surface coatings on the dustiness of a calcium carbonate nanopowder. J. Nanopart. Res. 15:1311 (2013).
  • Martin, J., D. Bello, K. Bunker, et al.: Occupational exposure to nanoparticles at commercial photocopy centers. J. Haz. Mater. 298:351–360 (2015).
  • Dylla, H., and M.M. Hassan: Characterization of nanoparticles released during construction of photocatalytic pavements using engineered nanoparticles. J. Nanopart. Res. 14(4):1–15 (2012).
  • Broekhuizen, J.C., F.A. Broekhuizen, R.T.M. Cornelissen, and L. Reijnders: Use of nanomaterials in the European construction industry and some occupational health aspects thereof. J. Nanopart. Res. 13(2):447–462 (2011).
  • Tsai, S., A. Ashter, E. Ada, J.L. Mead, C.F. Barry, and M.J. Ellenbecker: Airborne nanoparticle release associated with the compounding of nanocomposites using nanoalumina as fillers. Aerosol Air Qual. Res. 8:160–177 (2008).
  • Han, J.H., E.J. Lee, J.H. Lee, et al.: Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal. Toxicol. 20(8):741–749 (2008).
  • Fleury, D., J.A.S. Bomfim, A. Vignes, et al.: Identification of the main exposure scenarios in the production of CNT-polymer nanocomposites by melt-moulding process. J. Clean. Prod. 53:22–36 (2013).
  • Bekker, C.: Airborne manufactured nano-objects released from commercially available spray products: temporal and spatial influences. J. Expos. Sci. Environ. Epidemiol. 24(1):74–18 (2014).
  • Hagendorfer, H., C. Lorenz, R. Kaegi, et al.: Size-fractionated characterization and quantification of nanoparticle release rates from a consumer spray product containing engineered nanoparticles. J. Nanopart. Res. 12(7):2481–2494 (2010).
  • Lorenz, C., H. Hagendorfer, N. Von Goetz, et al.: Nanosized aerosols from consumer sprays: Experimental analysis and exposure modeling for four commercial products. J. Nanopart. Res. 13(8):3377–3391 (2011).
  • Norgaard, A.W., K.A. Jensen, C. Janfelt, F.R. Lauritsen, P.A. Clausen, and P. Wolkoff: Release of VOCs and particles during use of nanofilm spray products. Environ. Sci. Technol. 43(20):7824–7830 (2009).
  • Chen, B.T., A. Afshari, S. Stone, et al.: Nanoparticles-containing spray can aerosol: Characterization, exposure assessment, and generator design. Inhal. Toxicol. 22(13):1072–1082 (2010).
  • Nazarenko, Y., T.W. Han, P.J. Lioy, and G. Mainelis: Potential for exposure to engineered nanoparticles from nanotechnology-based consumer spray products. J. Expos. Sci. Environ. Epidemiol. 21(5):515–528 (2011).
  • Möhlmann, C., J. Welter, M. Klenke, and J. Sander: Workplace exposure at nanomaterial production processes. Journal of Physics Conference Series 170 (2009).
  • Quadros, M.E., and L.C. Marr: Silver nanoparticles and total aerosols emitted by nanotechnology-related consumer spray products. Environ. Sci. Technol. 45(24):10713–10719 (2011).
  • Johnson, D.R., M.M. Methner, A.J. Kennedy, and J.A. Steevens: Potential for occupational exposure to engineered carbon-based nanomaterials in environmental laboratory studies. Environ. Health Perspect. 118(1):49–54 (2010).
  • Fransman, W., J. Cherrie, M. van Tongeren, et al.: Development of a mechanistic model for the advanced REACH Tool (ART). TNO Report 34–45 (2009).
  • Safe Work Australia: Investigating the emissions of nanomaterials from composites and other solid articles during machining processes. Report 77, Canberra: CSIRO, 2013.
  • Koponen, I.K., K.A. Jensen, and T. Schneider: Comparison of dust released from sanding conventional and nanoparticle-doped wall and wood coatings. J. Expos. Sci. Environ. Epidemiol. 21(4):408–418 (2011).
  • Schlagenhauf, L., B.T.T. Chu, J. Buha, F. Nüesch, and J. Wang: Release of carbon nanotubes from an epoxy-based nanocomposite during an abrasion process. Environ. Sci. Technol. 46(13):7366–7372 (2012).
  • Van Landuyt, K.L., T. Nawrot, B. Geebelen, et al.: How much do resin-based dental materials release? A meta-analytical approach. Dent. Mater. 27(8):723–747 (2011).
  • Van Landuyt, K.L., K. Yoshihara, B. Geebelen, et al.: Should we be concerned about composite (nano-)dust? Dent. Mater. 28(11):1162–1170 (2012).
  • Huang, G., J.H. Park, L.G. Cena, B.L. Shelton, and T.M. Peters: Evaluation of airborne particle emissions from commercial products containing carbon nanotubes. J. Nanopart. Res. 14:1231 (2012).
  • Golanski, L., A. Gaborieau, A. Guiot, G. Uzu, J. Chatenet, and F. Tardif: Characterization of abrasion-induced nanoparticle release from paints into liquids and air. J. Phys. Conf. Ser. 304(1):615–624 (2011).
  • Brouwer, D., M. Berges, M.A. Virji, et al.: Harmonization of measurement strategies for exposure to manufactured nano-objects; Report of a workshop. Ann. Occup. Hyg. 56(1):1–9 (2012).
  • OECD: Harmonized tiered approach to measure and assess the potential exposure to airborne emissions of engineered nano-objects and their agglomerates and aggregates at workplaces. ENV/JM/MONO19 55:JT03378848 (2015).
  • BOHS & NVvA: Testing complicance with occupational exposure limits for airborne substances. British Occupational Hygiene Society (BOHS) en Nederlandse Vereniging voor Arbeidshygiëne (NVvA). Available at http://www.arbeidshygiene.nl/∼uploads/news/file/Sampling%20Strategy%20Guidance%202011[1].pdf (accessed September 2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.