767
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Particle size distribution: A key factor in estimating powder dustiness

, , &

References

  • Brunekreef, B., and B. Forsberg: Epidemiological evidence of effects of coarse airborne particles on health. Eur. Respir. J. 26:309–318 (2005).
  • Pope III, C.A., and D.W. Dockery: Health effects of fine particulate air pollution: lines that connect. J. Air Waste Manage. Assoc. 56:709–742 (2006).
  • Samoli, E., R. Peng, T. Ramsay, et al.: Acute effects of ambient particulate matter on mortality in Europe and North America: results from the APHENA study. Environ. Health Perspect. 116(11):1480–1486 (2008).
  • Kelly, F.J., and J.C. Fussell: Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 60:504–526 (2012).
  • Anderson, J.O., J.G. Thundiyil, and A. Stolbach: Clearing the air: a review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 8(2):166–175 (2012).
  • Viana, M., T.A.J. Kuhlbusch, X. Querol, et al.: Source apportionment of particulate matter in Europe: a review of methods and results. J. Aerosol Sci. 39:827–849(2008).
  • European Union: Directive 2008/50/EC of the European Parliament and of the Council of 21 of May 2008 on Ambient Air Quality and Cleaner Air for Europe.
  • Parrish, D.D., H.B. Singh, L. Molina, and S. Madronich: Air quality progress in North American megacities: a review. Atmos. Environ. 45(39):7015–7025 (2011).
  • Thurston, G.D., K. Ito, and R. Lall: A source apportionment of US fine particulate matter air pollution. Atmos. Environ. 45(24):3924–3936 (2011).
  • “Electronic Code of Federal Regulations,” Code of Federal Regulations Title 40, Part 50. 1987. Available at: http://www.ecfr.gov/cgi-bin/text-idx?SID=9f151978eebfdf047b5127f59520a463&node=pt40.2.50&rgn=div5#se40.2.50_16 ( accessed November 4, 2014).
  • Karnae, S., and K. John: Source apportionment of fine particulate matter measured in an industrialized coastal urban area of South Texas. Atmos. Environ. 45(23):3769–3776 (2011).
  • Csavina, J., J. Field, M.P. Taylor, et al.: A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Sci. Total Environ. 433:58–73 (2012).
  • Huertas, J.I., M.E. Huertas, and D.A. Solís: Characterization of airborne particles in an open pit mining region. Sci. Total Environ. 423:39–46 (2012).
  • Minguillón, M.C., X. Querol, A. Alastuey, E. Monfort, and J.V. Miró: PM sources in a highly industrialised area in the process of implementing PM abatement technology: quantification and evolution. J. Environ. Monitor. 9:1071–1081 (2007).
  • Monfort, E., V. Sanfelix, I. Celades, et al.: Diffuse PM10 emission factors associated with dust abatement technologies in the ceramic industry. Atmos. Environ. 45:7286–7292 (2011).
  • Monfort, E., V. Sanfelix, M.C. Minguillón, I. Celades, A. Escrig, and X. Querol: Mitigation Strategies: Castellón, Spain. Particulate Matter: Environmental Monitoring and Mitigation. London: Future Science, 2013. pp. 150–160
  • Santacatalina, S., C. Reche, M.C. Minguillón, et al.: Impact of fugitive emissions in ambient PM levels and composition: a case study in Southeast Spain. Sci. Total Environ. 408:4999–500911 (2010).
  • IPTS, European Commission, 2006: Reference Document on Best Available Techniques on Emissions from Storage. Available from: http://eippcb.jrc.ec.europa.eu/reference/ ( accessed April, 2017).
  • Cawley, B., and D. Leith: Bench-top apparatus to examine factors that affect dust generation. Appl. Occup. Environ. Hyg. 8(7):624–631 (1993).
  • Pujara, C.P.: Determination of Factors that Affect the Generation of Airborne Particles from Bulk Pharmaceutical Powders. PhD diss., Faculty of Purdue University, West Lafayette, IN, 1997.
  • Schofield, C., H.M. Sutton, and K.A.N. Waters: The generation of dust by materials handling operations. J. Powder Bulk Solids Technol. 3:40 (1979).
  • Authier-Martin, M.: Alumina handling dustiness. Essen. Read. Light Metals Alumina Bauxite. 1:774–82 (1989).
  • Cowherd, C., M.A. Grelinger, P.J. Englehart, R.F. Kent, and K.F. Wong: An apparatus and methodology for predicting the dustiness of materials. Am. Ind. Hyg. Assoc. J. 50:123–30 (1989).
  • Pensis, I., J. Mareels, D. Dahmann, and D. Mark: Comparative evaluation of the dustiness of industrial minerals according to European standard EN 15051, 2006. Ann. Occup. Hyg. 54:204–16 (2010).
  • López-Lilao, A., M. Bruzi, V. Sanfélix, A. Gozalbo, G. Mallol, and E. Monfort: Evaluation of the dustiness of different kaolin samples. J. Occup. Environ. Hyg. 12(8):547–554 (2015).
  • López Lilao, A., A. Escrig, A., M.J. Orts, G. Mallol, and E. Monfort: Quartz dustiness: a key factor in controlling exposure to crystalline silica in the workplace. J. Occup. Environ. Hyg. 11(13):817–828 (2016).
  • Upton, S.L., D.J. Hall, and G.W. Marsland: Some Experiments on Material Dustiness. Proceedings of the Aerosol Society Annual Conference, Surrey, UK, 1990.
  • Higman, R.W.: Dustiness testing: a useful tool. Ventilation'85 (1986).
  • Plinke, M.A.E, R. Maus, and D. Leith: Experimental examination of factors that affect dust generation by using Heubach and MRI testers. Am. Ind. Hyg. Assoc J. 53:325–330 (1992).
  • Plinke, M.A.E., D. Leith, M.G. Boundy, and F. Löffler: Dust generation from handling powders in industry. Am. Ind. Hyg. Assoc. J. 56:251–257 (1995).
  • Hsieh, H.P.: Measurement of flowability and dustiness of alumina. Light Metals 1987. 139–149 (1987).
  • European Committee for Standardization (CEN): Workplace Exposure: Measurement of the Dustiness of Bulk Materials; Part 1: Requirements and Choice of Test Methods; Part 2: Rotating Drum Method; Part 3: Continuous Drop Method (EN 15051). ( Standard). Brussels: Belgium, 2013.
  • CEN, EN 481: Workplace Atmospheres. Size Fraction Definitions for Measurement of Airborne Particles. Brussels, Belgium: European Committee for Standardization, 1993.
  • ISO, ISO 13320–1: Particle Size Analysis: Laser Diffraction Methods. Part 1: General Principles. Switzerland: International Organization for Standardization, 2009.
  • Jennings, B.R., and K. Parslow: Particle Size Measurement: The Equivalent Spherical Diameter. Proceedings of the Royal Society of London A. 419:137–149 (1988).
  • Otterstedt, J. E., and D. A. Brandreth: Small Particles Technology. Springer Science, New York: Plenum Press, 1998.
  • ISO, ISO 9277:1995: Determination of the Specific Surface Area of Solids by Gas Adsorption Using the BET Method. German Institute of Normalization (DIN), 1995. pp. 1–19.
  • ISO ISO 18753:2004: Determination of Absolute Density of Ceramic Powders by Pycnometer, 2004.
  • Mallol, G., J.L. Amoros, M.J. Orts, and D. Llorens: Densification of monomodal quartz particle beds by tapping. Chem. Eng. Sci. 63:5447–5456 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.