541
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Residential inter-zonal ventilation rates for exposure modeling

&

References

  • Borchiellini, R.: Function estimation of ventilation rates from tracer gas measurement. Build. Environ. 32(2):167–185 (1997).
  • I'anson, S., C. Irwin, and A. Howarth: Air flow measurement using three tracer gases. Build. Environ. 17(4):245–252 (1982).
  • Afonso, C., E. Maldonado, and E. Skåret: A single tracer-gas method to characterize multi-room air exchanges. Energy Build. 9(4):273–280 (1986).
  • Fortmann, R. C., N. L. Nagda, and H. E. Rector: Comparison of methods for the measurement of air change rates and interzonal airflows in two test residences. In Air Change Rate and Airtightness in Buildings. West Conshohocken, PA: ASTM International, 1990, pp. 104–118.
  • Harrje, D. T., R. N. Dietz, M. Sherman, D. L. Bohac, T. W. D'Ottavio, and D. J. Dickerhoff: Tracer gas measurement systems compared in a multifamily building. In Air Change Rate and Airtightness in Buildings. West Conshohocken, PA: ASTM International, 1990, pp. 5–20.
  • Riffat, S., K. Cheong, N. Adam, and L. Shao: Measurement and computational fluid dynamics modelling of aerosol particles in buildings. Indoor Environ. 4(5):289–296 (1995).
  • Becker, R., G. Haquin, and K. Kovler: Air change rates and radon accumulation in rooms with various levels of window and door closure. J. Build. Phys. 38(3):234–261 (2014).
  • Holmes, M., and G. Whittle: How accurate are the predictions of complex air movement models? Build. Serv. Eng. Res. Technol. 8(2):29–31 (1987).
  • Sherman, M.: On the estimation of multizone ventilation rates from tracer gas measurements. Build. Environ. 24(4):355–362 (1989).
  • Sherman, M. H., and I. S. Walker: Measured air distribution effectiveness for residential mechanical ventilation. HVAC & R Res. 15(2):211–229 (2009).
  • Parker, S., C. Coffey, J. Gravesen, et al.: Contaminant ingress into multizone buildings: An analytical state-space approach. Building Simulation. 7(1):57–71 (2014).
  • Huang, L., A. Ernstoff, P. Fantke, S. A. Csiszar, and O. Jolliet: A review of models for Near-field exposure pathways of chemicals in consumer products. Sci. Total. Environ. 574:1182–1208 (2017).
  • Acevedo-Bolton, V., K.-C. Cheng, R.-T. Jiang, W. R. Ott, N. E. Klepeis, and L. M. Hildemann: Measurement of the proximity effect for indoor air pollutant sources in two homes. J. Environ. Monitor. 14(1):94–104 (2012).
  • Breen, M. S., B. D. Schultz, M. D. Sohn, et al.: A review of air exchange rate models for air pollution exposure assessments. J. Expos. Sci. Environ. Epidem. 24(6):555 (2014).
  • Sparks, L. E., B. Tichenor, and J. White: Modeling individual exposure from indoor sources. In Modeling of Indoor Air Quality and Exposure. West Conshohocken, PA: ASTM International, 1993, pp. 245–256.
  • Dietz, R. N., R. W. Goodrich, E. A. Cote, and R. F. Wieser: Detailed description and performance of a passive perfluorocarbon tracer system for building ventilation and air exchange measurements. In Measured Air Leakage of Buildings, ASTM international, 1986, pp. 203–264.
  • Renbourn, E., T. Angus, J. M. Ellison, L. Croton, and M. S. Jones: The measurement of domestic ventilation: An experimental and theoretical investigation with particular reference to the use of carbon dioxide as a tracer substance. Epidem. Infect. 47(1):1–38 (1949).
  • Megri, A. C., and F. Haghighat: Zonal modeling for simulating indoor environment of buildings: Review, recent developments, and applications. HVAC & R Res. 13(6):887–905 (2007).
  • Axley, J.: Multizone airflow modeling in buildings: History and theory. HVAC & R Res. 13(6):907–928 (2007).
  • Foord, N., and O. Lidwell: Airborne infection in a fully air-conditioned hospital: I. Air transfer between rooms. Epidem. Infect. 75(1):15–30 (1975).
  • Lim, T., J. Cho, and B. S. Kim: Predictions and measurements of the stack effect on indoor airborne virus transmission in a high-rise hospital building. Build. Environ. 46(12):2413–2424 (2011).
  • Mousavi, E. S., and K. R. Grosskopf: Ventilation rates and airflow pathways in patient rooms: A case study of bioaerosol containment and removal. Ann. Occup. Hyg. 59(9):1190–1199 (2015).
  • Evans, W.: Development of continuous-application source terms and analytical solutions for one- and two-compartment systems. In ASTM STP 1287 Characterizing Sources of Indoor Air Pollution and Related Sinks Effects. West Conshohocken, PA: ASTM International, 1996, pp. 279–293.
  • Waters, J. R., G. Lawrence, and N. Jones: A tracer gas decay system of monitoring air infiltration and air movement in large single cell buildings. In ASTM STP 1002 Design and Protocol for Monitoring Indoor Air Quality. West Conshohocken, PA: ASTM International, 1989, pp. 266–286.
  • Evans, W.: Linear systems, compartmental modeling and eEstimability issues in IAQ studies. In ASTM STP 1287 Characterizing Sources of Indoor Air Pollution and Related Sinks Effects. West Conshohocken, PA: ASTM International, 1996, pp. 239–262.
  • Pitts, A.: Air movement in a partitioned industrial environment. Build. Serv. Eng. Res. Technol. 8(2):33–37 (1987).
  • Li, Y., S. Duan, I. Yu, and T. Wong: Multi‐zone modeling of probable SARS virus transmission by airflow between flats in Block E, Amoy Gardens. Indoor Air 15(2):96–111 (2005).
  • Jones, W. W., and J. G. Quintiere: Prediction of corridor smoke filling by zone models. Combust. Sci. Technol. 35(5–6):239–253 (1983).
  • Chan, W. R., W. W. Nazaroff, P. N. Price, and A. J. Gadgil: Effectiveness of urban shelter-in-place. III: Commercial districts. Building Simulation. 1(2):144–157 (2008).
  • Chan, W. R., W. W. Nazaroff, P. N. Price, and A. J. Gadgil: Effectiveness of urban shelter-in-place—II: Residential districts. Atmosph. Environ. 41(33):7082–7095 (2007).
  • Persily, A., H. Davis, S. J. Emmerich, and W. S. Dols: Airtightness evaluation of shelter-in-place spaces for protection against airborne chembio releases. NIST Interagency/Internal Report (NISTIR)-7546 (2009).
  • Lim, T., J. Cho, and B. S. Kim: The predictions of infection risk of indoor airborne transmission of diseases in high-rise hospitals: Tracer gas simulation. Energy Build. 42(8):1172–1181 (2010).
  • Emmerich, S. J.: Validation of multizone IAQ modeling of residential-scale buildings: A review/discussion. Ashrae Trans. 107:619 (2001).
  • Persily, A.: Carbon Monoxide Dispersion in Residential Buildings: Literature Review and Technical Analysis. U.S. Department of Commerce Technology Administration, National Institute of Standards and Technology, 1996.
  • Du, L., S. Batterman, C. Godwin, et al.: Air change rates and interzonal flows in residences, and the need for multi-zone models for exposure and health analyses. Int. J. Environ. Res. Publ. Health 9(12):4639 (2012).
  • Du, L., S. Batterman, C. Godwin, Z. Rowe, and J. Y. Chin: Air exchange rates and migration of VOCs in basements and residences. Indoor Air 25(6):598–609 (2015).
  • Özkaynak, H., P. Ryan, G. Allen, and W. Turner: Indoor air quality modeling: Compartmental approach with reactive chemistry. Environ. Int. 8(1–6):461–471 (1982).
  • Fortmann, R. C., H. E. Rector, and N. L. Nagda: A multiple tracer system for real-time measurement of interzonal airflows in residences. In ASTM STP 1002 Design and Protocol for Monitoring Indoor Air Quality. West Conshohocken, PA: ASTM International, 1989, pp. 287–297.
  • Batterman, S., C. Jia, G. Hatzivasilis, and C. Godwin: Simultaneous measurement of ventilation using tracer gas techniques and VOC concentrations in homes, garages and vehicles. J. Environ. Monitor. 8(2):249–256 (2006).
  • Li, H.: Validation of Three Multi-zone Airflow Models. Montreal, Quebec, Canada: Concordia University, 2002.
  • Modera, M., and R. Jansky: Residential Air-Distribution Systems: Interactions with the Building Envelope. Berkeley, CA: Lawrence Berkeley Lab, 1992.
  • Riffat, S., J. Walker, and J. Litter: Zone to zone tracer gas measurements laboratory calibration and values of air flows up and down stairs in houses. In Proceedings of the 9th ATVC Conference. Gent, Belgium, 1988.
  • Riffat, S., and M. Eid: Measurement of air flow between the floors of houses using a portable SF 6 System. Energy Build. 12(1):67–75 (1988).
  • Riffat, S.: Interzone air movement and its effect on condensation in houses. Appl. Energy 32(1):49–69 (1989).
  • Walton, G. N.: Estimating interroom contaminant movements, National Bureau of Standards. Washington, DC: Center for Building Technology, 1985.
  • Walton, G. N.: Calculation of inter-room air movement for multi-room building energy analysis. NASA STI/Recon Technical Report N 82 (1981).
  • Ferro, A.: The effects of proximity, compartments, and resuspension on personal exposure to indoor particulate matter. In Civil and Environmenal Engineering. Stanford, CA: Stanford University, 2003, pp. 163.
  • Barber, E., and J. Ogilvie: Interpretation of tracer gas experiments in ventilation research. J. Agricult. Eng. Res. 30:57–63 (1984).
  • Persily, A.: Personal communication. (2016).
  • Du, L., S. Batterman, C. Godwin, et al.: Air change rates and interzonal flows in residences, and the need for multi-zone models for exposure and health analyses. Int. J. Environ. Res. Publ. Health 9(12):4639–4661 (2012).
  • Dodson, R. E., J. I. Levy, J. P. Shine, J. D. Spengler, and D. H. Bennett: Multi-zonal air flow rates in residences in Boston, Massachusetts. Atmosph. Environ. 41(17):3722–3727 (2007).
  • Shinohara, N., T. Kataoka, K. Takamine, and M. Gamo: Distribution and variability of the 24-h average air exchange rates and interzonal flow rates in 26 Japanese residences in 5 seasons. Atmosph. Environ. 45(21):3548–3552 (2011).
  • Bekö, G., J. Toftum, and G. Clausen: Modeling ventilation rates in bedrooms based on building characteristics and occupant behavior. Build. Environ. 46(11):2230–2237 (2011).
  • Bekö, G., T. Lund, F. Nors, J. Toftum, and G. Clausen: Ventilation rates in the bedrooms of 500 Danish children. Build. Environ. 45(10):2289–2295 (2010).
  • Bekö, G., S. Gustavsen, M. Frederiksen, et al.: Diurnal and seasonal variation in air exchange rates and interzonal airflows measured by active and passive tracer gas in homes. Build. Environ. 104:178–187 (2016).
  • Bornehag, C.-G., J. Sundell, L. Hägerhed‐Engman, and T. Sigsgaard: Association between ventilation rates in 390 Swedish homes and allergic symptoms in children. Indoor Air 15(4):275–280 (2005).
  • EPA: MCCEM-Multi-chamber Concentration and Exposure Model Download and Install Instructions (2016).
  • Koontz, M., and H. Rector: Estimation of Distributions for Residential Air Exchange Rates. United States Environmental Protection Agency, 1995.
  • EPA, U.: Exposure Factors Handbook, 2011 edition (Final). 2011.
  • Van Buggenhout, S., A. Van Brecht, S. E. Özcan, E. Vranken, W. Van Malcot, and D. Berckmans: Influence of sampling positions on accuracy of tracer gas measurements in ventilated spaces. Biosyst. Eng. 104(2):216–223 (2009).
  • Shao, L., and S. Riffat: Tracer-gas mixing with air: Effect of tracer species. Appl. Energy 49(2):197–211 (1994).
  • Warner, C. G.: Measurements of the ventilation of dwellings. Epidem. Infect. 40(2):125–153 (1940).
  • Heiselberg, P., and M. Sandberg: Evaluation of discharge coefficients for window openings in wind driven natural ventilation. Int. J. Ventil. 5(1):43–52 (2006).
  • Karava, P., T. Stathopoulos, and A. Athienitis: Impact of internal pressure coefficients on wind-driven ventilation analysis. Int. J. Ventil. 5(1):53–66 (2006).
  • Karava, P., T. Stathopoulos, and A. Athienitis: Wind driven flow through building openings. Presented at the International Conference of Passive and Low Energy Cooling for the Built Environment, Santorini, Greece, May 2005.
  • Karava, P., T. Stathopoulos, and A. Athienitis: Wind driven flow through openings—A review of discharge coefficients. Int. J. Ventil. 3(3):255–266 (2004).
  • Mage, D. T., and W. R. Ott: Accounting for nonuniform mixing and human exposure in indoor environments. In Characterizing Sources of Indoor Air Pollution and Related Sink Effects. West Conshohocken, PA: ASTM International, 1996, pp. 263–278.
  • Pandian, M. D., J. V. Behar, W. R. Ott, et al.: Correcting errors in the nationwide data base of residential air exchange rates. J. Expos. Anal. Environ. Epidem. 8(4):577–586 (1998).
  • Modera, M. P., and M. K. Herrlin: Investigation of a fan-pressurization technique for measuring interzonal air leakage. In Air Change Rate and Airtightness in Buildings. West Conshohocken, PA: ASTM International, 1990, pp. 183–193.
  • Drescher, A., C. Lobascio, A. Gadgil, and W. Nazarofif: Mixing of a point‐source indoor pollutant by forced convection. Indoor Air 5(3):204–214 (1995).
  • Cheng, K.-C., V. Acevedo-Bolton, R.-T. Jiang, et al.: Stochastic modeling of short-term exposure close to an air pollution source in a naturally ventilated room: An autocorrelated random walk method. J. Expos. Sci. Environ. Epidem. 24(3):311 (2014).
  • Foat, T., J. Nally, and S. Parker: Investigating a selection of mixing times for transient pollutants in mechanically ventilated, isothermal rooms using automated computational fluid dynamics analysis. Build. Environ. 118:313–322 (2017).
  • Sherman, M.: Analysis of errors associated with passive ventilation measurement techniques. Build. Environ. 24(2):131–139 (1989).
  • Sherman, M.: Uncertainty in air flow calculations using tracer gas measurements. Build. Environ. 24(4):347–354 (1989).
  • Drivas, P. J., P. G. Simmonds, and F. H. Shair: Experimental characterization of ventilation systems in buildings. Environ. Sci. Technol. 6(7):609–614 (1972).
  • Riffat, S.: Algorithms for airflows through large internal and external openings. Appl. Energy 40(3):171–188 (1991).
  • Riffat, S., and J. Kohal: Experimental study of interzonal natural convection through an aperture. Appl. Energy 48(4):305–313 (1994).
  • Riffat, S.: Influence of tracer-gases on the accuracy of interzonal airflow measurements. Appl. Energy 38(1):67–77 (1991).
  • Abt, E., H. H. Suh, G. Allen, and P. Koutrakis: Characterization of indoor particle sources: A study conducted in the metropolitan Boston area. Environ. Health Perspect. 108(1):35 (2000).
  • D'Ottavio, T. W., G. I. Senum, and R. N. Dietz: Error analysis techniques for perfluorocarbon tracer derived multizone ventilation rates. Build. Environ. 23(3):187–194 (1988).
  • Balcomb, J., C. Martin, and J. Littler: A new tracer-gas testing technique: Theory and numerical simulations. Build. Serv. Eng. Res. Technol. 17(3):101–107 (1996).
  • Heidt, F., R. Rabenstein, and G. Schepers: Comparison of tracer gas methods for measuring airflows in two‐zone buildings. Indoor Air 1(3):297–309 (1991).
  • Miller, S., K. Leiserson, and W. Nazaroff: Nonlinear least‐squares minimization applied to tracer gas decay for determining airflow rates in a two‐zone building. Indoor Air 7(1):64–75 (1997).
  • Vera Araya, S.: Interzonal Air and Moisture Transport through Large Horizontal Openings: An Integrated Experimental and Numerical Study. Montreal, Canada: Concordia University, 2009.
  • Sohn, M. D., and M. J. Small: Parameter estimation of unknown air exchange rates and effective mixing volumes from tracer gas measurements for complex multi-zone indoor air models. Build. Environ. 34(3):293–303 (1998).
  • Oracle: Crystal Ball. Redwood Shores, CA, (2016).
  • Huber-Carol, C., N. Balakrishnan, M. Nikulin, and M. Mesbah: Goodness-of-Fit Tests and Model Validity. New York: Springer Science & Business Media, 2012.
  • Henderson, A. R.: Testing experimental data for univariate normality. Clin. Chim. Acta 366(1):112–129 (2006).
  • Isaacs, K., J. Burke, L. Smith, and R. Williams: Identifying housing and meteorological conditions influencing residential air exchange rates in the DEARS and RIOPA studies: Development of distributions for human exposure modeling. J. Expos. Sci. Environ. Epidem. 23(3):248 (2013).
  • Pandian, M., W. Ott, and J. Behar: Residential air exchange rates for use in indoor air and exposure modeling studies. J. Expose. Anal. Environ. Epidem. 3(4):407–416 (1993).
  • Murray, D. M., and D. E. Burmaster: Residential air exchange rates in the United States: Empirical and estimated parametric distributions by season and climatic region. Risk Anal. 15(4):459–465 (1995).
  • Wallace, L., S. J. Emmerich, and C. Howard-Reed: Continuous measurements of air change rates in an occupied house for 1 year: The effect of temperature, wind, fans, and windows. J. Expos. Sci. Environ. Epidem. 12(4):296 (2002).
  • Murray, D. M.: Residential house and zone volumes in the United States: Empirical and estimated parametric distributions. Risk Anal. 17(4):439–446 (1997).
  • Esmen, N. A., and Y. Y. Hammad: Log‐normality of environmental sampling data. J. Environ. Sci. Health Part A 12(1–2):29–41 (1977).
  • Leidel, N. A., K. A. Busch, and J. Lynch: Occupational Exposure Sampling Strategy Manual. Cincinnati, Ohio: National Institute for Occupational Safety and Health, (1977).
  • Spear, R. C., S. Selvin, and M. Francis: The influence of averaging time on the distribution of exposures. Am. Indust. Hyg. Assoc. J. 47(6):365–368 (1986).
  • Rappaport, S. M.: Interpreting levels of exposures to chemical agents. In Patty's Industrial Hygiene. John Wiley & Sons, Inc., 2001, pp. 349–403.
  • Grandell, J.: Stochastic models of air pollutant concentration. Lecture Notes in Statistics. Vol. 30., Berlin: Springer-Verlag, 1985, pp. 110.
  • Kahn, H. D.: Note on the distribution of air pollutants. J. Air Pollut. Control Assoc. 23(11):973–973 (1973).
  • Ott, W. R.: A physical explanation of the lognormality of pollutant concentrations. Jo. Air Waste Manage. Assoc. 40(10):1378–1383 (1990).
  • Persily, A., A. Musser, and S. J. Emmerich: Modeled infiltration rate distributions for US housing. Indoor Air 20(6):473–485 (2010).
  • Sparks, L.: IAQ model for Windows RISK Version 1.5. Research Triangle Park, NC: US (1996).
  • Sahmel, J., K. Unice, P. Scott, D. Cowan, and D. Paustenbach: The use of multizone models to estimate an airborne chemical contaminant generation and decay profile: Occupational exposures of hairdressers to vinyl chloride in hairspray during the 1960s and 1970s. Risk Anal. 29(12):1699–1725 (2009).
  • Sahmel, J., H. Avens, P. Scott, et al.: Measured removal rates of chrysotile asbestos fibers from air and comparison with theoretical estimates based on gravitational settling and dilution ventilation. Inhal. Toxicol. 27(14):787–801 (2015).
  • Sparks, L. E.: Modeling indoor concentrations and exposures. Ann. New York Acad. Sci. 641(1):102–111 (1992).
  • Sandberg, M.: The multi-chamber theory reconsidered from the viewpoint of air quality studies. Build. Environ. 19(4):221–233 (1984).
  • Jacques, D. R., and D. A. Smith: A simplified building airflow model for agent concentration prediction. J. Occup. Environ. Hyg. 7(11):640–650 (2010).
  • Keil, C. B., C. E. Simmons, and T. R. Anthony: Mathematical Models for Estimating Occupational Exposure to Chemicals. Falls Church, VA: AIHA, 2009.
  • Jones, R. M., C. Simmons, and F. Boelter: Development and evaluation of a semi-empirical two-zone dust exposure model for a dusty construction trade. J. Occup. Environ. Hyg. 8(6):337–348 (2011).
  • Jones, R. M., C. E. Simmons, and F. W. Boelter: Comparing two-zone models of dust exposure. J. Occup. Environ. Hyg. 8(9):513–519 (2011).
  • Earnest, C. M., and R. L. Corsi: Inhalation exposure to cleaning products: Application of a two-zone model. J. Occup. Environ. Hyg. 10(6):328–335 (2013).
  • Boelter, F. W., C. E. Simmons, L. Berman, and P. Scheff: Two-zone model application to breathing zone and area welding fume concentration data. J. Occup. Environ. Hyg. 6(5):298–306 (2009).
  • Arnold, S. F., Y. Shao, and G. Ramachandran: Evaluating well-mixed room and Near-field–Far-field model performance under highly controlled conditions. J. Occup. Environ. Hyg. 14(6):427–437 (2017).
  • Buringh, E., J. V. D. Wal, and R. V. D. Belt: Modelling of respirable dust concentrations in brickworks with a multiple cell ventilation model as an expedient for control measures. Ann. Occup. Hyg. 34(5):499–507 (1990).
  • Buringh, E., and R. W. Lanting: Models predicting airborne concentrations in workplaces: Practical application in industrial hygiene. Clean Air J. Clean Air Soc. Austral. NZ 25(4):147 (1991).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.