327
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Quantitative evaluation of carbon nanomaterial releases during electric heating wire cutting and sawing machine cutting of expanded polystyrene-based composites using thermal carbon analysis

ORCID Icon, & ORCID Icon

References

  • Popov, V.N.: Carbon nanotubes: properties and application. Mater. Sci. Eng. R Rep. 43:61–102 (2004).
  • Lu, W., M. Zu, J.H. Byun, B.S. Kim, and T.W. Chou: State of the art of carbon nanotube fibers: opportunities and challenges. Adv. Mater. 24(14):1805–1833 (2012).
  • Donaldson, K., F.A. Murphy, R. Duffin, and C.A. Poland: Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part. Fibre Toxicol. 7:5 (2010).
  • Wang, J., Y. Xu, Z. Yang, et al.: Toxicity of carbon nanotubes. Curr. Drug Metab. 14(8):891–899 (2013).
  • Oberdörster, G., V. Castranova, B. Asgharian, and P. Sayre: Inhalation exposure to carbon nanotubes (CNT) and carbon nanofibers (CNF): Methodology and dosimetry. J. Toxicol. Environ. Health B Crit. Rev. 18(3–4):121–212 (2015).
  • Ema, M., K.S. Hougaard, A. Kishimoto, and K. Honda: Reproductive and developmental toxicity of carbon-based nanomaterials: A literature review. Nanotoxicology 10(4):391–412 (2016).
  • Methner, M.M., M.E. Birch, D.E. Evans, B.K. Ku, K. Crouch, and M.D. Hoover: Identification and characterization of potential sources of worker exposure to carbon nanofibers during polymer composite laboratory operations. J. Occup. Environ. Hyg. 4:D125–D130 (2007).
  • Methner, M., C. Crawford, and C. Geraci: Evaluation of the potential airborne release of carbon nanofibers during the preparation, grinding, and cutting of epoxy-based nanocomposite material. J. Occup. Environ. Hyg. 9:308–318 (2012).
  • Bello, D., B.L. Wardie, N. Yamamoto, et al.: Exposure to nanoscale particles and fibres during machining of hybrid advanced composites containing carbon nanotubes. J. Nanopart. Res. 11:231–249 (2009).
  • Heitbrink, W.A., and L.M. Lo: Effect of carbon nanotubes upon emissions from cutting and sanding carbon fiber-epoxy composites. J. Nanopart. Res. 17:335 (2015).
  • Bello, D., B.L. Wardle, J. Zhang, et al.: Characterization of exposures to nanoscale particles and fibers during solid core drilling of hybrid carbon nanotube advanced composites. Int. J. Occup. Environ. Health 16(4):434–450 (2010).
  • Hellmann, A., K. Schmidt, S. Ripperger, and M. Berges: Freisetzung ultrafeiner Stäube bei der mechanischen Bearbeitung von Nanokompositen. [Release of ultrafine dusts during the machining of nanocomposites.] Gefahrst. Reinhalt. Luft 72:473–476 (2012). [German] Available at http://www.dguv.de/medien/ifa/en/pub/grl/pdf/2014_160.pdf (accessed April 5, 2018).
  • Ogura, I., M. Kotake, M. Shigeta, et al.: Potential release of carbon nanotubes from their composites during grinding. J. Phys. Conf. Ser. 429: 012049 (2013).
  • Ogura, I., M. Shigeta, M. Kotake, M. Uejima, and K. Honda: Particle release from single-wall and multiwall carbon nanotubes in polystyrene-based composites during grinding. J. Phys. Conf. Ser. 617: 012028 (2015).
  • Boonruksa, P., D. Bello, J. Zhang, J.A. Isaacs, J.L. Mead, and S.R. Woskie: Characterization of potential exposures to nanoparticles and fibers during manufacturing and recycling of carbon nanotube reinforced polypropylene composites. Ann. Occup. Hyg. 60(1):40–55 (2016).
  • Cena, L.G., and T.M. Peters: Characterization and control of airborne particles emitted during production of epoxy/carbon nanotube nanocomposites. J. Occup. Environ. Hyg. 8:86–92 (2011).
  • Wohlleben, W., S. Brill, M.W. Meier, et al.: On the lifecycle of nanocomposites: Comparing released fragments and their in-vivo hazards from three release mechanisms and four nanocomposites. Small 7(16):2384–2395 (2011).
  • Wohlleben, W., M.W. Meier, S. Vogel, et al.: Elastic CNT–polyurethane nanocomposite: synthesis, performance and assessment of fragments released during use. Nanoscale 5(1):369–380 (2013).
  • Schlagenhauf, L., B.T.T. Chu, J. Buha, F. Nüesch, and J. Wang: Release of carbon nanotubes from an epoxy-based nanocomposite during an abrasion process. Environ. Sci. Technol. 46(13): 7366–7372 (2012).
  • Schlagenhauf, L., T. Buerki-Thurnherr, Y.Y. Kuo, et al.: Carbon nanotubes released from an epoxy-based nanocomposite: Quantification and particle toxicity. Environ. Sci. Technol. 49(17):10616–10623 (2015).
  • Schlagenhauf, L., B. Kianfar, T. Buerki-Thurnherr, et al.: Weathering of a carbon nanotube/epoxy nanocomposite under UV light and in water bath: impact on abraded particles. Nanoscale 7(44):18524–18536 (2015).
  • Huang, G., J.H. Park, L.G. Cena, B.L. Shelton, and T.M. Peters: Evaluation of airborne particle emissions from commercial products containing carbon nanotubes. J. Nanopart. Res. 14:1231 (2012).
  • Golanski, L., A. Guiot, M. Pras, and F. Tardif: Release-ability of nano fillers from different nanomaterials (toward the acceptability of nanoproduct). J. Nanopart. Res. 14:962 (2012).
  • Rhiem, S., A.K. Barthel, A. Meyer-Plath, et al.: Release of 14C-labelled carbon nanotubes from polycarbonate composites. Environ. Pollut. 215:356–365 (2016).
  • Jiang, L., A. Kondo, M. Shigeta, et al.: Evaluation of particles released from single-wall carbon nanotube/polymer composites with or without thermal aging by an accelerated abrasion test. J. Occup. Environ. Hyg. 11: 658–664 (2014).
  • Ogura, I., C. Okayama, M. Kotake, S. Ata, Y. Matsui, and K. Gotoh: Airborne particles released by crushing CNT composites. J. Phys. Conf. Ser. 838:012015 (2017).
  • U.S. National Institute for Occupational Safety and Health: Method 5040 Issue 3, Diesel particulate matter (as Elemental Carbon). NIOSH manual of analytical methods (NMAM), 4th edn., by M.E. Birch. U.S. National Institute for Occupational Safety and Health, March 2003. Available at www.cdc.gov/niosh/docs/2003-154/pdfs/5040.pdf (accessed April 5, 2018).
  • Birch, M.E., B.K. Ku, D.E. Evans, and T.A. Ruda-Eberenz: Exposure and emissions monitoring during carbon nanofiber production–part I: elemental carbon and iron-soot aerosols. Ann. Occup. Hyg. 55(9):1016–1136 (2011).
  • Dahm, M.M., D.E. Evans, M.K. Schubauer-Berigan, M.E. Birch, and J.E. Fernback: Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers. Ann. Occup. Hyg. 56(5):542–556 (2012).
  • Dahm, M.M., M.K. Schubauer-Berigan, D.E. Evans, M.E. Birch, J.E. Fernback, and J.A. Deddens: Carbon nanotube and nanofiber exposure assessments: An analysis of 14 site visits. Ann. Occup. Hyg. 59(6):705–723 (2015).
  • Ono-Ogasawara, M., and T. Myojo: A proposal of method for evaluating airborne MWCNT concentration. Ind. Health 49(6):726–734 (2011).
  • Ono-Ogasawara, M., M. Takaya, H. Kubota, et al.: Approach to the exposure assessment of MWCNT by considering size distribution and oxidation temperature of elemental carbon. J. Phys. Conf. Ser. 429:012004 (2013).
  • Ogura, I., M. Kotake, N. Hashimoto, K. Gotoh, and A. Kishimoto: Release characteristics of single-wall carbon nanotubes during manufacturing and handling. J. Phys. Conf. Ser. 429:012057 (2013).
  • Hedmer, M., C. Isaxon, P.T. Nilsson, et al.: Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes. Ann. Occup. Hyg. 58(3):355–379 (2014).
  • Luizi, F.: “Responsible care and nanomaterials–case study Nanocyl.” Oral presented at the European Responsible Care Conference, Prague, Czech Republic, October 21–23, 2009. Available at http://www.cefic.org/Documents/ResponsibleCare/04_Nanocyl.pdf (accessed April 5, 2018).
  • Pauluhn, J.: Multi-walled carbon nanotubes (Baytubes®): approach for deviation of occupational exposure limit. Regul. Toxicol. Pharmacol. 57:78–89 (2010).
  • Nakanishi, J., I. Ogura, A. Kishimoto, et al.: “Risk assessment of manufactured nanomaterials: carbon nanotubes (CNT).” August, 2011. Available at https://en.aist-riss.jp/assessment/2721/ (accessed April 5, 2018).
  • U.S. National Institute for Occupational Safety and Health: NIOSH current intelligence bulletin 65: Occupational exposure to carbon nanotubes and nanofibers (DHHS (NIOSH) Publication No. 2013–145). U.S. National Institute for Occupational Safety and Health, April 2013. Available at http://www.cdc.gov/niosh/docs/2013-145/ (accessed April 5, 2018).
  • Ogura, I., M. Kotake, S. Ata, and K. Honda: Quantitative measurement of carbon nanotubes released from their composites by thermal carbon analysis. J. Phys. Conf. Ser. 838:012014 (2017).
  • Ogura, I.: “Guide to evaluating emission and exposure of carbon nanomaterials (carbon nanotubes and graphenes).” April 2018. Available at https://doi.org/10.13140/RG.2.2.30715.41762 (accessed June 26, 2018).
  • Hashimoto, N., I. Ogura, M. Kotake, A. Kishimoto, and K. Honda: Evaluating the capabilities of portable black carbon monitors and photometers for measuring airborne carbon nanotubes. J. Nanopart. Res. 15:2033 (2013).
  • International Organization for Standardization (ISO): Air quality–Particle size fraction definitions for health-related sampling (ISO 7708). [Standard] Geneva, Switzerland, 1995.
  • U.S. National Institute for Occupational Safety and Health: Factors Affecting Aerosol Sampling. NIOSH manual of analytical methods (NMAM), 5th edn. Chapter AE, by P. A. Baron. U.S. National Institute for Occupational Safety and Health, April 2016. Available at https://www.cdc.gov/niosh/docs/2014-151/pdfs/chapters/chapter-ae.pdf (accessed July 5, 2018).
  • Zíková, N., J. Ondráček, and V. Ždímal: Size-Resolved Penetration Through High-Efficiency Filter Media Typically Used for Aerosol Sampling. Aerosol Sci. Technol. 49: 239–249 (2015).
  • Ogura, I., M. Kotake, H. Sakurai, and K. Honda: Surface-collection efficiency of Nuclepore filters for nanoparticles. Aerosol Sci. Technol. 50:846–856 (2016).
  • U.S. National Institute for Occupational Safety and Health: Method 0500 Issue 2, Particulates not otherwise regulated, total. NIOSH manual of analytical methods (NMAM), 4th edn., by J. Clere, and F. Hearl. U.S. National Institute for Occupational Safety and Health, August 1994. Available at https://www.cdc.gov/niosh/docs/2003-154/pdfs/0500.pdf (accessed June 15, 2018).
  • Myojo, T., T. Oyabu, K. Nishi, et al.: Aerosol generation and measurement of multi-wall carbon nanotubes. J. Nanopart. Res. 11:91–99 (2009).
  • Japan Society for Occupational Health: Recommendation of occupational exposure limits. J. Occup. Health 59: 436–469 (2017).
  • ACGIH: Carbon Black: TLV® Chemical Substances 7th Edition Documentation. Cincinnati, Ohio: ACGIH, 2011.
  • Doudrick, K., P. Herckes, and P. Westerhoff: Detection of carbon nanotubes in environmental matrices using programmed thermal analysis. Environ. Sci. Technol. 46(22):12246–12253 (2012).
  • Ging, J., R. Tejerina-Anton, G. Ramakrishnan, et al.: Development of a conceptual framework for evaluation of nanomaterials release from nanocomposites: environmental and toxicological implications. Sci. Total Environ. 473–474:9–19 (2014).
  • Saber, A.T., A. Mortensen, J. Szarek, et al.: Epoxy composite dusts with and without carbon nanotubes cause similar pulmonary responses, but differences in liver histology in mice following pulmonary deposition. Part. Fibre Toxicol. 13:37 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.