589
Views
12
CrossRef citations to date
0
Altmetric
Articles

A thermogravimetric analysis application to determine coal, carbonate, and non-carbonate minerals mass fractions in respirable mine dust

, &

References

  • Almberg KS, Halldin, CN, Blackley DJ, Laney AS, Storey E, Rose CS, Go LHT, Cohen RA. 2018. Progressive massive fibrosis resurgence identified in U.S. coal miners filing for black lung benefits. 1970–2016. Ann Am Thor Soc. 15(12):1420–1426. doi:10.1513/AnnalsATS.201804-261OC
  • Annual Book of ASTM Standards (ASTM). 1993. Vol. 1994, Section 5, American Society of Testing Materials, Philadelphia, D3172–D3189.
  • Antao VC, Petsonk EL, Attfield MD. 2006. Advanced cases of coal workers’ pneumoconiosis-two counties, Virginia, 2006. Morbid Mortal Wkly Rpt. 55(33):909–913.
  • Antao VC, Petsonk EL, Sokolow LZ, Wolfe AL, Pinheiro GA, Hale JM, Attfield MD. 2005. Rapidly progressive coal workers’ pneumoconiosis in the United States: geographic clustering and other factors. Occup Environ Med. 62(10):670–674. doi:10.1136/oem.2004.019679
  • Attfield MD, Petsonk EL. 2007. Advanced pneumoconiosis among working underground coal miners—eastern Kentucky and southwest Virginia, 2006. Morbid Mortal Wkly Rpt. 56(26):652–655.
  • Barone TL, Patts JR, Janisko SJ, Colinet JF, Patts LD, Beck TW, Mischler SE. 2016. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust. J Occup Environ Hyg. 13(4):284–292. doi:10.1080/15459624.2015.1116694
  • Birch ME, Noll JD. 2004. Submicrometer elemental carbon as a selective measure of diesel particulate matter in coal mines. J Environ Monitor. 6(10):799–806. doi:10.1039/b407507b
  • Blackley DJ, Crum JB, Halldin CN, Storey E, Laney AS. 2016. Resurgence of progressive massive fibrosis in coal miners—eastern Kentucky. Morbid Mortal Wkly Rpt. 65:1385–1389 (2016). doi:10.15585/mmwr.mm6549a1
  • Blackley DJ, Halldin CN, Laney AS. 2018. Continued increase in prevalence of coal workers’ pneumoconiosis in the United States, 1970–2017. Am J Publ Health 180(9):1220–1222. doi:10.2105/AJPH.2018.304517
  • Blackley DJ, Reynolds LE, Short C, Carson R, Storey E, Halldin CN, Laney AS. 2018. Progressive massive fibrosis in coal miners from 3 clinics in Virginia. J Am Med Assoc. (JAMA). 319(5):500–501. doi:10.1001/jama.2017.18444
  • Cohen RA, Petsonk EL, Rose C, Young B, Regier M, Najmuddin A, Abraham JL, Churg A, Green FHY. 2016. Lung pathology in U.S. coal workers with rapidly progressive pneumoconiosis implicates silica and silicates. Am J Respir Crit Care Med. 193(6):673–680. doi:10.1164/rccm.201505-1014OC
  • Colinet JF, Listak JM. 2012. Silica and respirable content in rock dust samples. Coal Age. 117(12):48–52.
  • Doney BC, Blackley D, Hale JM et al. 2019. Respirable coal mine dust in underground mines, United States, 1982–2017. Am J Indust Med. 62(6):1–8 (2019).
  • Graber JM, Harris G, Almberg KS, Rose CS, Petsonk EL, Cohen RA. 2017. Increasing severity of pneumoconiosis among younger former US coal miners working exclusively under modern dust-control regulations. J Occup Environ Med. 59(6):105–111.
  • Jelic TM, Estalilla OC, Sawyer-Kaplan PR, Plata MJ, Powers JT, Emmett M, Kuenstner JT. 2017. Coal mine dust desquamative chronic interstitial pneumonia: a precursor of dust-related diffuse fibrosis and of emphysema. Int J Occup Environ Med. 8(3):153–165 doi:10.15171/ijoem.2017.1066
  • Johann-Essex V, Keles C, Sarver E. 2017a. A computer-controlled SEM-EDX routine for characterizing respirable coal mine dust. Minerals 7(1):15. doi:10.3390/min7010015
  • Johann-Essex V, Keles C, Rezaee M, Scaggs-Witte M, Sarver E. 2017b. Respirable coal mine dust characteristics in samples collected in central and northern Appalachia. Int J Coal Geol. 182:85–93 (2017b). doi:10.1016/j.coal.2017.09.010
  • Laney AS, Attfield MD. 2010. Coal workers' pneumoconiosis and progressive massive fibrosis are increasingly more prevalent among workers in small underground coal mines in the United States. Occup Environ Med. 67(6):428–431. doi:10.1136/oem.2009.050757
  • Laney S, Weissman D. 2014. Respiratory diseases caused by coal mine dust. J Occup Environ Med. 56(10):18–22.
  • Mayoral MC, Izquierdo MT, Andres JM, Rubio B. 2001. Different approaches to proximate analysis by thermogravimetry analysis. Thermochimica Acta. 370(1):91–97. doi:10.1016/S0040-6031(00)00789-9
  • National Academies of Sciences, Engineering, and Medicine (NASEM). 2018. Monitoring and sampling approaches to assess underground coal mine dust exposures. Washington, DC: The National Academies Press.
  • Page S, Organiscak J. 2002. Using proximate analysis to characterize airborne dust generation from bituminous coals. Aer Sci Technol. 36(6):721–733 (2002). doi:10.1080/02786820290038393
  • Petsonk EL, Rose C, Cohen R. 2013. Coal mine dust lung disease. New lessons from old exposure. Am J Respir Crit Care Med. 187(11):1178–1185. doi:10.1164/rccm.201301-0042CI
  • Phillips K, Keles C, Sarver E, Scaggs-Witte M. 2018. Coal and mineral mass fractions in personal respirable dust samples collected by central Appalachian miners. Min. Eng. 70(6):16–30.
  • Phillips K, Keles C, Scaggs M, Johann V, Rezaee M, Sarver E. 2017. Comparison of coal vs. mineral mass fractions in respirable dust in Appalachian coal mines. Proceedings of the 16th North American Mine Ventilation Symposium Golden. pp. 7 1–9
  • Pollock DE, Potts JD, Joy GJ. 2010. Investigation into dust exposures and mining practices in mines in the southern Appalachian Region. Min Eng. 62(2):44–49.
  • Sarver E, Keles C, Rezaee M. 2019. Beyond conventional metrics: Comprehensive characterization of respirable coal mine dust. Int J Coal Geol. 207:84–95. doi:10.1016/j.coal.2019.03.015
  • Schatzel SJ. 2009. Identifying sources of respirable quartz and silica dust in underground coal mines in southern West Virginia, western Virginia, and eastern Kentucky. Int J Coal Geol. 78(2):110–118. doi:10.1016/j.coal.2009.01.003
  • Scaggs M, Sarver E, Keles C. 2015. Considerations for TGA of respirable coal mine dust samples. Proceedings of the 15th North American Mine Ventilation Symposium, Blacksburg, Virginia.
  • Scaggs, M. 2016. Development and implementation of a standard methodology for respirable coal mine dust characterization with thermogravimetric analysis. Master’s thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
  • United States Code of Federal Regulations (CFR). 2013. 30 CFR Part 70.101: Mandatory health standards—underground coal mines, respirable dust standard when quartz is present. Retrieved from https://www.govinfo.gov/content/pkg/CFR-2018-title30-vol1/xml/CFR-2018-title30-vol1-part70.xml [accessed 19 September 2019].
  • United States Mine Safety and Health Administration (MSHA). 2017. Complete quartz data (1986–2016). Retrieved from https://www.msha.gov/news-media/special-initiatives/2016/09/28/respirable-dust-rule-historic-step-forward-effort-end [accessed 5 August 2019].
  • United States Mine Safety and Health Administration (MSHA). 2014. Infrared determination of quartz in respirable coal mine dust, method no.: P-7. US Department of Labor. Retrieved from http://www.msha.gov/Techsupp/pshtcweb/MSHA%20P7.pdf.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.