719
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Occupational exposure during metal additive manufacturing: A case study of laser powder bed fusion of aluminum alloy

, , , &

References

  • AFNOR. 2014. Technical specifications of powders for additive manufacturing applications. norme NF E 67-010. https://www.boutique.afnor.org/xml/1058972.
  • Aizenberg V, Grinshpun SA, Willeke K, Smith J, Baron PA. 2000. Performance characteristics of the button personal inhalable aerosol sampler. AIHAJ. 61(3):398–404. doi:10.1080/15298660008984550
  • André J. 2018. From additive manufacturing to 3D/4D printing: from concepts to current achievements. ISTE (International Society for Technology in Education).
  • Annexe du règlement (CE). 2014. Journal officiel de l’Union européenne (440/2008). http://www.aida.ineris.fr.
  • Azimi P, Zhao D, Pouzet C, Crain N, Stephens B. 2016. Emissions of ultrafine particles and volatile organic compounds from commercially available desktop three-dimensional printers with multiple filaments. Environ Sci Technol. 50(3):1260–1268. doi:10.1021/acs.est.5b04983
  • Balesdent J, Pétraud J, Feller C. 1991. Effects of ultrasound on the particle size distribution of organic matter in grounds. IRD. 29(2):95–106.
  • Bau S, Rousset D, Payet R, Keller FX. 2020. Characterizing particle emissions from a direct energy deposition additive manufacturing process and associated occupational exposure to airborne particles. J Occup Environ Hyg. 17(2-3):59–72. doi:10.1080/15459624.2019.1696969
  • Bau S, Witschger O, Galland B, Martin P. 2015. [Real-time metrology of chemical substances at the workstation: advantages and limits]. HST (INRS). 5–239.
  • Baumers M, Kellens K, Gutowski TG, Duflou J, Lifset R, Flanagan W. 2017. Environmental dimensions of additive manufacturing: mapping application domains and their environmental implications: environmental dimensions of additive manufacturing. J Ind Ecol. 48:50–68. doi:10.1111/jiec.12629
  • Boisselier D, Sankaré S. 2012. Influence of powder characteristics in laser direct metal deposition of SS316L for metallic parts manufacturing. Sci Direct. 39:455–463. doi:10.1016/j.phpro.2012.10.061
  • Broday DM, Rosenzweig R. 2011. Deposition of fractal-like soot aggregates in the human respiratory tract. Aerosol Sci. 42(6):372–386. doi:10.1016/j.jaerosci.2011.03.001
  • CEN. 2018. Workplace exposure: assessment of inhalation exposure to nano-objects and their agglomerates and aggregates CEN.EN 17058.
  • DEKATI. 2004. Physique des aerosols. Impacteur en cascade DLPI+ [cascade impactor DLPI+]. http://www.addair.fr/product/impacteur-en-cascade-dlpi/.
  • Douglas ST, Stanley WJ. 2014. Costs and cost effectiveness of additive manufacturing. National Institute of Standards and Technology (NIST). Special publication 1176:35–47. doi:10.6028/NIST.SP.1176
  • Dupasquier D. 2018. [What are the risks associated with metal additive manufacturing?]. A3DM Additive Manufacturing; [accessed 2018 Jan 30]. https://www.a3dm-magazine.fr/magazine/toutes-industries/risques-lies-fabrication-additive-metallique.
  • Eddy L, Morèle Y. 2008. [Performance of individual sampling pumps] (France). Hygiène et sécurité du travail (HST). (8):213–2297.
  • EOS. 2014. Prototypes & Manufacturing Services G. E.-E. Material data sheet - EOS Aluminum AlSi10Mg. https://gpiprototype.com/.
  • Forschungsgemeinschaft D. 2015. List of MAK and BAT values. Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area. DFG. Report No. 51.
  • Gokuldoss KP, Kolla S, Eckert J. 2017. Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting. Materials. 10(6):672. doi:10.3390/ma10060672
  • Gordon SC, Butala JH, Carter JM, Elder A, Gordon T, Gray G, Sayre PG, Schulte PA, Tsai CS, West J. 2014. Workshop report: strategies for setting occupational exposure limits for engineered nanomaterials. Regul Toxicol Pharmacol. 68(3):305–311. doi:10.1016/j.yrtph.2014.01.005
  • Graff P, Ståhlbom B, Nordenberg E, Graichen A, Johansson P, Karlsson H. 2017. Evaluating measuring techniques for occupational exposure during additive manufacturing of metals: a pilot study. J Ind Ecol. 21(S1):S120–S129. doi:10.1111/jiec.12498
  • Henrik H, Keld A, Alexander J, Fonseca A, Brostrom A. 2020. Nanoparticle exposure and workplace measurements during processes related to 3D printing of a metal object. Frontiers and Public Health 8:2–11. doi:10.3389/fpubh.2020.608718
  • IARC. 2012. IARC Monographs on the evaluation of carcinogenic risks to humans. Geneva: WHO. Human Carcinogen. p. 465.
  • IFA. 2019. GESTIS Substance Database. Information system on hazardous substances of the German Social Accident Insurance. Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung. www.dguv.de/ifa/gestis-database.
  • INRS. 2014. Nanomaterials and nanoparticles. National Research and Security Institute. Health and Security at Work Branch, Division of Risks; [accessed 2020]. http://www.inrs.fr/risques/nanomateriaux/metrologie.html.
  • INRS. 2015. Calibration method for the quantification of pollutants. MétroPol; [accessed 2015 Oct]. http://www.inrs.fr/dms/inrs/PDF/metropol-analyse-etalonnage.pdf.
  • ISO. 2008. Health and safety practices in occupational settings relevant to nanotechnologies. Nanotechnologies. TR 12885:2018. p. 79.
  • ISO. 2012. Determination of metals and metalloids in airborne particulate matter by inductively coupled plasma atomic emission spectrometry. (2), 47.
  • Kolb T, Schmidt P, Beisser R, Tremel J, Schmidt M. 2017. Safety in additive manufacturing: fine dust measurements for a process chain in laser beam melting of metals. RTe Journal – Fachforum Für Rapid Technologie. 2017:458. https://www.rtejournal.de/ausgabe-14-2017/4626
  • Kumar V, Gill KD. 2009. Aluminium neurotoxicity: neurobehavioural and oxidative aspects. Arch Toxicol. 83(11):965–978. doi:10.1007/s00204-009-0455-6
  • Langlois E, Morèle Y, Lhuillier F. 2008. Performances des pompes de prélèvement individuel. Hygiène et sécurité du travail HST. (213):5–14. ND 2297
  • O’Shaughnessy P. 2013. Occupational health risk to nanoparticulate exposure. R Soc Chem. 15:49–62. doi:10.1039/C2EM30631J
  • Rossbach B, Buchta M, Csanády GA, Filser JG, Hilla W, Windorfer K, Stork J, Zschiesche W, Gefeller O, Pfahlberg A, et al. 2006. Biological monitoring of welders exposed to aluminium. Toxicol Lett. 162(2-3):239–245. doi:10.1016/j.toxlet.2005.09.018
  • Union European. 2008. Regulation (EC) of the European Parliament. Europe: EUR-Lex. Vol. 020.
  • Walter J, Baumgartel A, Hustedt M, Hebisch R, Kaierle S. 2018. Inhalation exposure to hazardous substances during powder-bed processes. Sci Direct. (74):295–299. doi:10.1016/j.procir.2018.08.114
  • Wang J, Asbach C, Fissan H, Hülser T, Kuhlbusch TAJ, Thompson D, Pui DYH. 2011. How can nanobiotechnology oversight science and industry: examples from environmental, health, and safety studies of nanoparticles (Nano-EHS). J Nanopart Res. 13(4):1373–1387. doi:10.1007/s11051-011-0236-z
  • Won Kim S, Harper M, Slaven J, Chisholm P, Lee T. 2010. Performance of high flow rate samplers for respirable particle collection. Ann Occup Hyg. 54(6):697–709. doi:10.1093/annhyg/meq050
  • Wouter B, Bert VW. 2017. Influence of 3D printing on transport: a theory and experts judgment based conceptual model. Transp Rev. 38:556–575. doi:10.1080/01441647.2017.1370036

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.