1,754
Views
1
CrossRef citations to date
0
Altmetric
Articles

Volatile organic compound and particulate emissions from the production and use of thermoplastic biocomposite 3D printing filaments

, , &

References

  • Azimi P, Zhao D, Pouzet C, Crain NE, Stephens B. 2016. Emissions of ultrafine particles and volatile organic compounds from commercially available desktop three-dimensional printers with multiple filaments. Environ Sci Technol. 50(3):1260–1268. doi:10.1021/acs.est.5b04983
  • Byrley P, Geer Wallace MA, Boyes W, Rogers K. 2020. Particle and volatile organic compound emissions from a 3D printer filament extruder. Sci Total Environ. 736:139604. doi:10.1016/j.scitotenv.2020.139604
  • Byrley P, George B, Boyes W, Rogers K. 2019. Particle emissions from fused deposition modeling 3D printers: evaluation and meta-analysis. Sci Total Environ. 655:395–407. doi:10.1016/j.scitotenv.2018.11.070
  • Calí M, Pascoletti G, Gaeta M, Milazzo G, Ambu R. 2020. A new generation of bio-composite thermoplastic filaments for a more sustainable design of parts manufactured by FDM. Appl Sci. 10(17):5852. doi:10.3390/app10175852
  • Calvino C, Macke N, Kato R, Rowan SJ. 2020. Development, processing and applications of bio-sourced cellulose nanocrystal composites. Prog Polym Sci. 103:101221. doi:10.1016/j.progpolymsci.2020.101221
  • Chan FL, House R, Kudla I, Lipszyc JC, Rajaram N, Tarlo SM. 2018. Health survey of employees regularly using 3D printers. Occup Med. 68(3):211–214. doi:10.1093/occmed/kqy042
  • Davis AY, Zhang Q, Wong JPS, Weber RJ, Black MS. 2019. Characterization of volatile organic compound emissions from consumer level material extrusion 3D printers. Build Environ. 160:106209. doi:10.1016/j.buildenv.2019.106209
  • [DFG] Deutsche Forschungsgemeinschaft. 2021. Permanent Senate Commission for the investigation of health hazards of chemical compounds in the work area. Report 57. List of MAK and BAT Values 2021; [accessed Dec 8]. mbwl_2021_eng.pdf (publisso.de)
  • Du Preez S, Johnson AR, LeBouf RF, Linde SJL, Stefaniak AB, Du Plessis J. 2018. Exposures during industrial 3-D printing and post-processing tasks. RPJ. 24(5):865–871. doi:10.1108/RPJ-03-2017-0050
  • European Commission (EC). 2020. EU-LCI values; [accessed 2021 Nov 22]. https://ec.europa.eu/growth/sectors/construction/eu-lci-subgroup/eu-lci-values_en.
  • European Union (EU). 2008. Directive 2008/50/EC of the European Parliament and of the Council on ambient air quality and cleaner air for Europe. Off J Eur Union L 152:1–44. https://eur-lex.europa.eu/eli/dir/2008/50/oj.
  • Floyd EL, Wang J, Regens JL. 2017. Fume emissions from a low-cost 3-D printer with various filaments. J Occup Environ Hyg. 14(7):523–533. doi:10.1080/15459624.2017.1302587
  • Finnish Ministry of Social Affairs and Health (FMSAH). 2015. Decree 545/2015 of the Ministry of Social Affairs and Health on health-related conditions of housing and other residential buildings and qualification requirements for third-party experts; [accessed 2021 Nov 25]. https://www.finlex.fi/en/.
  • Finnish Ministry of Social Affairs and Health (FMSAH). 2020. Concentrations known to be harmful; [accessed 2021 Nov 22]. https://julkaisut.valtioneuvosto.fi/handle/10024/162457.
  • Ford S, Despeisse M. 2016. Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J. Clean Prod. 137:1573–1587. doi:10.1016/j.jclepro.2016.04.150
  • Hébert CD, Giles HD, Heath JE, Hogan DB, Modderman JP, Conn RE. 1999. Toxicity of lactide in dogs after 2 and 13 weeks of daily oral dosing. Food Chem Toxicol. 37(4):335–342. doi:10.1016/S0278-6915(99)00014-9
  • Höllbacher E, Rieder-Gradinger C, Strateva D, Srebotnik E. 2015. A large-scale test set-up for measuring VOC emissions from wood products under laboratory conditions in simulated real rooms. Holzforschung. 69(4):457–462. doi:10.1515/hf-2014-0129
  • House R, Rajaram N, Tarlo SM. 2017. Case report of asthma associated with 3D printing. Occup Med. 67(8):652–654. doi:10.1093/occmed/kqx129
  • Jeon H, Park J, Kim S, Park K, Yoon C. 2020. Effect of nozzle temperature on the emission rate of ultrafine particles during 3D printing. Indoor Air. 30(2):306–314. doi:10.1111/ina.12624
  • Kasanen J-P, Pasanen A-L, Pasanen P, Liesivuori J, Kosma V-M, Alarie Y. 1999. Evaluation of sensory irritation of 3-carene and turpentine, and acceptable levels of monoterpenes in occupational and indoor environment. J Toxicol Environ Health A. 57(2):89–114. doi: 10.1080/009841099157809.
  • Klaasen CD, Casarett LJ, Doull J. 2013. Casarett & Doull’s toxicology: the basic science of poisons. 8th ed. Manhattan (NY): McGraw Hill Education.
  • Kim S, Kim J-A, Kim H-J, Kim SD. 2006. Determination of formaldehyde and TVOC emission factor from wood-based composites by small chamber method. Polymer Testing. 25(5):605–614. doi:10.1016/j.polymertesting.2006.04.008
  • Kim S, Hong S-H, Bong C-K, Cho M-H. 2015b. Characterization of air freshener emission: the potential health effects. J Toxicol Sci. 40(5):535–550. doi:10.2131/jts.40.535
  • Kim T, Song B, Cho KS, Lee I-S. 2020. Therapeutic potential of volatile terpenes and terpenoids from forests for inflammatory diseases. Int J Mol Sci. 21(6):2187. doi:10.3390/ijms21062187
  • Kim Y, Yoon C, Ham S, Park J, Kim S, Kwon O, Tsai P-J. 2015a. Emissions of nanoparticles and gaseous material from 3D printer operation. Environ Sci Technol. 49(20):12044–12053. doi:10.1021/acs.est.5b02805
  • Kim YW, Kim MJ, Chung BY, Bang DY, Lim SK, Choi SM, Lim DS, Cho MC, Yoon K, Kim HS, et al. 2013. Safety evaluation and risk assessment of d-limonene. J Toxicol Environ Health B Crit Rev. 16(1):17–38. doi:10.1080/10937404.2013.769418
  • Kwon O, Yoon C, Ham S, Park J, Lee J, Yoo D, Kim Y. 2017. Characterization and control of nanoparticle emissions during 3D printing. Environ Sci Technol. 51(18):10357–10368. doi:10.1021/acs.est.7b01454
  • Manoukian A, Buiron D, Temime-Roussel B, Wortham H, Quivet E. 2016. Measurements of VOC/SVOC emission factors from burning incenses in an environmental test chamber: influence of temperature, relative humidity, and air exchange rate. Environ Sci Pollut Res Int. 23(7):6300–6311. doi:10.1007/s11356-015-5819-2
  • Mazzanti V, Malagutti L, Mollica F. 2019. FDM 3D printing of polymers containing natural fillers: a review of their mechanical properties. Polymers. 11(7):1094. doi:10.3390/polym11071094
  • Mendes L, Kangas A, Kukko K. 2017. Characterization of emissions from a desktop 3D printer. J. Ind. Ecol. 14:94–106. doi:10.1111/jiec.12569
  • Mossman BT, Borm PJ, Castranova V, Costa DL, Donaldson K, Kleeberger SR. 2007. Mechanisms of action of inhaled fibers, particles and nanoparticles in lung and cardiovascular diseases. Part Fibre Toxicol. 4:4. doi:10.1186/1743-8977-4-4
  • Peng T, Kellens K, Tang R, Chen C, Chen G. 2018. Sustainability of additive manufacturing: an overview on its energy demand and environmental impact. Addit Manuf. 21:694–704. doi:10.1016/j.addma.2018.04.022
  • Pohleven J, Burnard MD, Kutnar A. 2019. Volatile organic compounds emitted from untreated and thermally modified wood—a review. WFS. 51(3):231–224. doi:10.22382/wfs-2019-023
  • Pope CA, Dockery DW. 2006. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc. 56(6):709–742. doi:10.1080/10473289.2006.10464485
  • PubChem. 2022. Compound summary. Nonan-1-ol; [accessed 2022 Feb 15]. https://pubchem.ncbi.nlm.nih.gov/compound/1-Nonanol.
  • Rao C, Gu F, Zhao P, Sharmin N, Gu H, Fu J. 2017. Capturing PM2.5 emissions from 3D printing via nanofiber-based air filter. Sci Rep. 7(1):10366. doi: 10.1038/s41598-017-10995-7.
  • Roffael E. 2006. Volatile organic compounds and formaldehyde in nature, wood and wood based panels. Holz Roh Werkst. 64(2):144–149. doi:10.1007/s00107-005-0061-0
  • Rohr AC. 2013. The health significance of gas- and particle-phase terpene oxidation products: a review. Environ Int. 60:145–162. doi:10.1016/j.envint.2013.08.002
  • Sarigiannis DA, Karakitsios SP, Gotti A, Liakos IL, Katsoyiannis A. 2011. Exposure to major volatile organic compounds and carbonyls in European indoor environments and associated health risk. Environ Int. 37(4):743–765. doi:10.1016/j.envint.2011.01.005
  • Sarwar G, Olson DA, Corsi RL, Weschler CJ. 2004. Indoor fine particles: the role of terpene emissions from consumer products. J Air Waste Manag Assoc. 54(3):367–377. doi:10.1080/10473289.2004.10470910
  • Shahnaz B, Hayes A, Dechsakulthorn F. 2012. Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal Toxicol. 24(2):125–135. doi:10.3109/08958378.2010.642021
  • Stabile L, Scungio M, Buonanno G, Arpino F, Ficco G. 2017. Airborne particle emission of a commercial 3D printer: the effect of filament material and printing temperature. Indoor Air. 27(2):398–408. doi:10.1111/ina.12310
  • Stefaniak AB, Du Preez S, Du Plessis JL. 2021. Additive manufacturing for occupational hygiene: a comprehensive review of processes, emissions & exposures. J. Toxicol. Environ. Health B. 24(5):173–222. doi:10.1080/10937404.2021.1936319
  • Stefaniak AB, Johnson AR, du Preez S, Hammond DR, Wells JR, Ham JE, LeBouf RF, Menchaca KW, Martin SB, Duling MG, et al. 2019. Evaluation of emissions and exposures at workplaces using desktop 3-dimensional printer. J Chem Health Saf. 26(2):19–30. doi:10.1016/j.jchas.2018.11.001
  • Stefaniak AB, LeBouf RF, Yi J, Ham J, Nurkewicz T, Schwegler-Berry DE, Chen BT, Wells JR, Duling MG, Lawrence RB, et al. 2017. Characterization of chemical contaminants generated by a desktop fused deposition modeling 3-dimensional printer. J Occup Environ Hyg. 14(7):540–550. doi:10.1080/15459624.2017.1302589
  • Steinle P. 2016. Characterization of emissions from a desktop 3D printer and indoor air measurements in office settings. J Occup Environ Hyg. 13(2):121–132. doi:10.1080/15459624.2015.1091957
  • Tuomi T, Vainiotalo S. 2016. The guideline and target values for total volatile organic compound concentrations in industrial indoor environments in Finland. Indoor Built Environ. 25(2):424–434. doi:10.1177/1420326X14554270
  • Vaidya AA, Collet C, Gaugler M, Lloyd-Jones G. 2019. Integrating softwood biorefinery lignin into polyhydroxybutyrate composites and application in 3D printing. Mater Today Commun. 19:286–196. doi:10.1016/j.mtcomm.2019.02.008
  • Van Broekhuizen P, Van Veelen W, Streekstra W-H, Schulte P, Reijnders L. 2012. Exposure limits for nanoparticles: report of an international workshop on nano reference values. Ann Occup Hyg. 56(5):515–524. doi:10.1093/annhyg/mes043
  • Van Kampen V, Merget R, Baur X. 2000. Occupational airway sensitizers: an overview on the respective literature. Am J Ind Med. 38(2):164–218. doi:10.1002/1097-0274(200008)38:2 < 164::AID-AJIM7 > 3.0.CO;2-2
  • Vance ME, Pegues V, Van Montfrans S, Leng W, Marr LC. 2017. Aerosol emissions from fuse-deposition modeling 3D printers in a chamber and in real indoor environments. Environ Sci Technol. 51(17):9516–9523. doi:10.1021/acs.est.7b01546
  • Weschler CJ. 2011. Chemistry in indoor environments: 20 years of research. Indoor Air. 21(3):205–218. doi:10.1111/j.1600-0668.2011.00713.x
  • World Health Organization (WHO). 1995. Dry cleaning, some chlorinated solvents and other industrial chemicals. IARC monographs on the evaluation of carcinogenic risk to humans. Vol. 63. Geneve (Switzerland): World Health Organization.
  • World Health Organization (WHO). 2006. Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol. IARC monographs on the evaluation of carcinogenic risks to humans. Vol. 88. Geneve (Switzerland): World Health Organization.
  • World Health Organization (WHO). 2018. WHO housing and health guidelines. Geneva (Switzerland): World Health Organization.
  • World Health Organization (WHO). 2021. WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Geneva (Switzerland): World Health Organization.
  • Wolkoff P. 2020. Indoor air chemistry: terpene reaction products and airway effects. Int J Hyg Environ Health. 225:113439. doi:10.1016/j.ijheh.2019.113439
  • Wolkoff P, Wilkins CK, Clausen PA, Nielsen GD. 2006. Organic compounds in office environments—sensory irritation, odor, measurements and the role of reactive chemistry. Indoor Air. 16(1):7–19. doi:10.1111/j.1600-0668.2005.00393.x
  • Väisänen AJK, Alonen L, Ylönen S, Hyttinen M. 2021a. The impact of thermal reprocessing of 3D printable polymers on their mechanical performance and airborne pollutant profiles. J Polym Res. 28:436. doi:10.1007/s10965-021-02723-7.
  • Väisänen A, Alonen L, Ylönen S, Hyttinen M. 2022. Organic compound and particle emissions of additive manufacturing with photopolymer resins and chemical outgassing of manufactured resin products. J Toxicol Environ Health A. 85(5):198–216. doi:10.1080/15287394.2021.1998814.
  • Väisänen AJK, Hyttinen M, Ylönen S, Alonen L. 2019. Occupational exposure to gaseous and particulate contaminants originating from additive manufacturing of liquid, powdered, and filament plastic materials and related post-processes. J Occup Environ Hyg. 16(3):258–271. doi:10.1080/15459624.2018.1557784
  • Yi J, LeBouf RF, Duling MG, Nurkiewicz T, Chen BT, Schwegler-Berry D, Virji MA, Stefaniak AB. 2016. Emission of particulate matter from a desktop three-dimensional (3D) printer. J Toxicol Environ Health A. 79(11):453–465. doi:10.1080/15287394.2016.1166467