950
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Direct-reading instruments for aerosols: A review for occupational health and safety professionals part 1: Instruments and good practices

, , ORCID Icon, , ORCID Icon &

References

  • Afshar-Mohajer N, Foos R, Volckens J, Ramachandran G. 2020. Variability of aerosol mass and number concentrations during taconite mining operations. J Occup Environ Hyg. 17(1):1–14. doi:10.1080/15459624.2019.1688823
  • Alsheikh MA, Lin S, Niyato D, Tan H-P. 2014. Machine learning in wireless sensor networks: algorithms, strategies, and applications. IEEE Commun Surv Tutorials. 16(4):1996–2018. doi:10.1109/COMST.2014.2320099
  • Baron PA. 1994. Direct-reading instruments for aerosols. A review. Analyst. 119(1):35–40. doi:10.1039/AN9941900035.
  • Baron PA. 2001. Measurement of airborne fibers: a review. Ind Health. 39(2):39–50. doi:10.2486/indhealth.39.39.
  • Benton-Vitz K, Volckens J. 2008. Evaluation of the pDR-1200 Real-Time Aerosol Monitor. J Occup Environ Hyg. 5(6):353–359. doi:10.1080/15459620802009919
  • Berman JD, Peters TM, Koehler KA. 2018. Optimizing a sensor network with data from hazard mapping demonstrated in a heavy-vehicle manufacturing facility. Ann Work Exposures Health. 62(5):547–558. doi:10.1093/annweh/wxy020
  • Bisesi MS. 2004. Bisesi and Kohn’s industrial hygiene evaluation methods. 2nd ed. Boca Raton (FL): CRC Press.
  • Brouwer DH, Gijsbers JHJ, Lurvink MWM. 2004. Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies. Ann Occup Hyg. 48(5):439–453. doi:10.1093/annhyg/meh040
  • Buettner H. 1990. Measurement of the size of fine nonspherical particles with a light-scattering particle counter. Aerosol Sci Technol. 12(2):413–421. doi:10.1080/02786829008959356
  • Cecala AB, Reed WR, Joy GJ, Westmoreland SC, O’Brien AD. 2013. Helmet-Cam: tool for assessing miners’ respirable dust exposure. Min Eng. 65(9):78–84.
  • Clerc F, Njiki-Menga G-H, Witschger O. 2013. Exploratory study on a statistical method to analyse time resolved data obtained during nanomaterial exposure measurements. J Phys Conf Ser. 429(1):012003–012009. doi:10.1088/1742-6596/429/1/012003
  • Coffey CC, Pearce TA. 2010. Direct-reading methods for workplace air monitoring. J Chem Health Saf. 17(3):10–21. doi:10.1016/j.jchas.2009.08.003
  • Cooper MR, West GH, Burrelli LG, Dresser D, Griffin KN, Segrave AM, Perrenoud J, Lippy BE. 2017. Inhalation exposure during spray application and subsequent sanding of a wood sealant containing zinc oxide nanoparticles. J Occup Environ Hyg. 14(7):510–522. doi:10.1080/15459624.2017.1296237.
  • da Silveira Fleck A, Couture C, Sauvé J-F, Njanga P-E, Neesham-Grenon E, Lachapelle G, Coulombe H, Hallé S, Aubin S, Lavoué J, et al. 2018. Diesel engine exhaust exposure in underground mines: comparison between different surrogates of particulate exposure. J Occup Environ Hyg. 15(7):549–558. doi:10.1080/15459624.2018.1459044
  • Dahm MM, Evans DE, Schubauer-Berigan MK, Birch ME, Deddens JA. 2013. Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers: mobile direct-reading sampling. Ann Occup Hyg. 57(3):328–344. doi:10.1093/annhyg/mes079.
  • Dasch J, D'Arcy J, Gundrum A, Sutherland J, Johnson J, Carlson D. 2005. Characterization of fine particles from machining in automotive plants. J Occup Environ Hyg. 2(12):609–625. doi:10.1080/15459620500377659.
  • Evans DE, Heitbrink WA, Slavin TJ, Peters TM. 2008. Ultrafine and respirable particles in an automotive grey iron foundry. Ann Occup Hyg. 52(1):9–21. doi:10.1093/annhyg/mem056.
  • Evans DE, Ku BK, Birch ME, Dunn KH. 2010. Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling. Ann Occup Hyg. 54(5):514–531. doi:10.1093/annhyg/meq015
  • Flagan RC. 1998. History of electrical aerosol measurements. Aerosol Sci Tech. 28(4):301–380. doi:10.1080/02786829808965530
  • Gebhart J. 2001. Optical direct-reading techniques: light intensity systems. In: Baron PA, Willeke K, editors. Aerosol measurement: principles, techniques, and applications. 2nd ed. New York (NY): Wiley Interscience. p. 419–454.
  • Goede H, Kuijpers E, Krone T, le Feber M, Franken R, Fransman W, Duyzer J, Pronk A. 2021. Future prospects of occupational exposure modelling of substances in the context of time-resolved sensor data. Ann Work Expo Health. 65(3):246–254. doi:10.1093/annweh/wxaa102.
  • Görner P, Bemer D, Fabriés JF. 1995. Photometer measurement of polydisperse aerosols. J Aerosol Sci. 26(8):1281–1302. doi:10.1016/0021-8502(95)00049-6
  • Görner P, Simon X, Bémer D, Lidén G. 2012. Workplace aerosol mass concentration measurement using optical particle counters. J Environ Monit. 14(2):420–428. doi:10.1039/C1EM10558B.
  • Grant M, Booth A. 2009. A typology of reviews: an analysis of 14 review types and associated methodologies. Health Info Libr J. 26(2):91–108. doi:10.1111/j.1471-1842.2009.00848.x
  • Grimm H, Eatough DJ. 2009. Aerosol measurement: the use of optical light scattering for the determination of particulate size distribution, and particulate mass, including the semi-volatile fraction. J Air Waste Manag Assoc. 59(1):101–107. doi:10.3155/1047-3289.59.1.101.
  • Hall BH, Khan B. 2002. Adoption of new technology. In: New economy handbook. Berkeley: Berkeley University. p. 1–38.
  • Heitbrink WA, Evans DE, Peters TM, Slavin TJ. 2007. Characterization and mapping of very fine particles in an engine machining and assembly facility. J Occup Environ Hyg. 4(5):341–351. doi:10.1080/15459620701290081.
  • Hering SV, Lewis GS, Spielman SR, Eiguren-Fernandez A. 2019. A MAGIC concept for self-sustained, water-based, ultrafine particle counting. Aerosol Sci Technol. 53(1):63–72. doi:10.1080/02786826.2018.1538549
  • Hinds WC. 1999. Aerosol technology: properties, behavior, and measurement of airborne particles. Second. New York (NY): John Wiley & Sons.
  • Houseman EA, Virji MA. 2017. A Bayesian approach for summarizing and modeling time-series exposure data with left censoring. Ann Work Expo Health. 61(7):773–783. doi:10.1093/annweh/wxx046
  • Hu K, Rahman A, Bhrugubanda H, Sivaraman V. 2017. HazeEst: machine learning based metropolitan air pollution estimation from fixed and mobile sensors. IEEE Sensors J. 17(11):3517–3525. doi:10.1109/JSEN.2017.2690975
  • Jiang R-T, Acevedo-Bolton V, Cheng K-C, Klepeis NE, Ott WR, Hildemann LM. 2011. Determination of response of real-time SidePak AM510 monitor to secondhand smoke, other common indoor aerosols, and outdoor aerosol. J Environ Monit. 13(6):1695–1702. doi:10.1039/C0EM00732C.
  • John W. 2011. Size distribution characteristics of aerosols. In: Kulkarni P, Baron PA, Willeke K, editors. Aerosol measurement: principles, techniques, and applications. 3rd ed. New York (NY): John Wiley and Sons. p. 41–54.
  • Klein Entink R, Fransman W, Brouwer D. 2011. How to statistically analyze nano exposure measurement results: using an ARIMA time series approach. J Nanopart Res. 13(12):6991–7004. doi:10.1007/s11051-011-0610-x
  • Koehler KA, Zhu J, Wang H, Peters TM. 2017. Sampling strategies for accurate hazard mapping of noise and other hazards using short-duration measurements. Ann Work Expo Health. 61(2):183–194. doi:10.1093/annweh/wxw025.
  • Kulkarni P, Qi C, Fukushima N. 2016. Development of portable aerosol mobility spectrometer for personal and mobile aerosol measurement. Aerosol Sci Technol. 50(11):1167–1179. doi:10.1080/02786826.2016.1230662
  • Liu S, Hammond SK. 2010. Mapping particulate matter at the body weld department in an automobile assembly plant. J Occup Environ Hyg. 7(10):593–604. doi:10.1080/15459624.2010.509844.
  • Liu Y, Daum PH. 2000. The effect of refractive index on size distributions and light scattering coefficients derived from optical particle counters. J Aerosol Sci. 31(8):945–957. doi:10.1016/S0021-8502(99)00573-X
  • Lowther SD, Jones KC, Wang X, Whyatt JD, Wild O, Booker D. 2019. Particulate matter measurement indoors: a review of metrics, sensors, needs, and applications. Environ Sci Technol. 53(20):11644–11656. doi:10.1021/acs.est.9b03425.
  • Magen Molho H, Zivan O, Broday DM, Raz R. 2019. Application of a sensor network of low cost optical particle counters for assessing the impact of quarry emissions on its vicinity. Atmos Environ. 211:29–37. doi:10.1016/j.atmosenv.2019.04.054
  • Marx E, Mulholland GW. 1983. Size and refractive index determination of single polystyrene spheres. J Res Natl Bur Stand. 88(5):321–338. doi:10.6028/jres.088.016
  • Matson U, Ekberg LE, Afshari A. 2004. Measurement of ultrafine particles: a comparison of two handheld condensation particle counters. Aerosol Sci Tech. 38(5):487–495. doi:10.1080/02786820490462200
  • Methner M, Beaucham C, Crawford C, Hodson L, Geraci C. 2012. Field application of the nanoparticle emission assessment technique (NEAT): task-based air monitoring during the processing of engineered nanomaterials (ENM) at four facilities. J Occup Environ Hyg. 9(9):543–555. doi:10.1080/15459624.2012.699388.
  • Methner M, Hodson L, Dames A, Geraci C. 2010. Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials—part B: results from 12 field studies. J Occup Environ Hyg. 7(3):163–176. doi:10.1080/15459620903508066.
  • Methner M, Hodson L, Geraci C. 2010. Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials—part A. J Occup Environ Hyg. 7(3):127–132. doi:10.1080/15459620903476355.
  • O’Brien DM, Fischbach TJ, Cooper TC, Todd WF, Gressel MG, Martinez KF. 1989. Acquisition and spreadsheet analysis of real time dust exposure data: a case study. Appl Ind Hyg. 4(9):238–243. doi:10.1080/08828032.1989.10388570
  • O’Shaughnessy P, Cavanaugh JE. 2015. Performing t-tests to compare autocorrelated time series data collected from direct-reading instruments. J Occup Environ Hyg. 12(11):743–752. doi:10.1080/15459624.2015.1044603.
  • O’Shaughnessy PT, Slagley JM. 2002. Photometer response determination based on aerosol physical characteristics. AIHA J. 63(5):578–585. doi:10.1080/15428110208984743.
  • Park J, Ramachandran G, Raynor P, Kim S. 2011. Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations. J Nanopart Res. 13(10):4897–4911. doi:10.1007/s11051-011-0469-x
  • Patts JR, Cecala AB, Haas EJ. 2020. Helmet-CAM: strategically minimizing exposures to respirable dust through video exposure monitoring. Min Metall Explor. 37(2):727–732. doi:10.1007/s42461-019-00168-7.
  • Peters TM, Elzey S, Johnson R, Park H, Grassian VH, Maher T, O'Shaughnessy P. 2008. Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety. J Occup Environ Hyg. 6(2):73–81. doi:10.1080/15459620802590058
  • Peters TM, Heitbrink WA, Evans DE, Slavin TJ, Maynard AD. 2006. The mapping of fine and ultrafine particle concentrations in an engine machining and assembly facility. Ann Occup Hyg. 50(3):249–257. doi:10.1093/annhyg/mei061
  • Pui DYH. 1996. Direct-reading instrumentation for workplace aerosol measurements. A review. Analyst. 121(9):1215–1224. doi:10.1039/an9962101215
  • Quenzel H. 1969. Influence of refractive index on the accuracy of size determination of aerosol particles with light-scattering aerosol counters. Appl Opt. 8(1):165–169. doi:10.1364/AO.8.000165.
  • Quinn C, Anderson GB, Magzamen S, Henry CS, Volckens J. 2020. Dynamic classification of personal microenvironments using a suite of wearable, low-cost sensors. J Expo Sci Environ Epidemiol. 30(6):962–970. doi:10.1038/s41370-019-0198-2.
  • Ramachandran G. 2008. Toward better exposure assessment strategies—the new NIOSH initiative. Ann Occup Hyg. 52(5):297–301. doi:10.1093/annhyg/men025.
  • Rappaport SM. 1991. Assessment of long-term exposures to toxic substances in air. Ann Occup Hyg. 35(1):61–121. doi:10.1093/annhyg/35.1.61.
  • Schmoll LH, Peters TM, O'Shaughnessy PT. 2010. Use of a condensation particle counter and an optical particle counter to assess the number concentration of engineered nanoparticles. J Occup Environ Hyg. 7(9):535–545. doi:10.1080/15459624.2010.496072
  • Smith JP, Baron PA, Murdock DJ. 1987. Response characteristics of scattered light aerosol sensors used for control monitoring. Am Ind Hyg Assoc J. 48(3):219–229. doi:10.1080/15298668791384661.
  • Sousan S, Koehler K, Thomas G, Park JH, Hillman M, Halterman A, Peters TM. 2016. Inter-comparison of low-cost sensors for measuring the mass concentration of occupational aerosols. Aerosol Sci Technol. 50(5):462–473. doi:10.1080/02786826.2016.1162901.
  • Stephenson D, Seshadri G, Veranth JM. 2003. Workplace exposure to submicron particle mass and number concentrations from manual arc welding of carbon steel. AIHA J. 64(4):516–521. doi:10.1080/15428110308984848
  • Taylor CD, Reynolds SJ. 2001. Comparison of a direct-reading device to gravimetric methods for evaluating organic dust aerosols in an enclosed swine production environment. Appl Occup Environ Hyg. 16(1):78–83. doi:10.1080/104732201456159.
  • Thomas G, Sousan S, Tatum M, Liu X, Zuidema C, Fitzpatrick M, Koehler K, Peters T. 2018. Low-cost, distributed environmental monitors for factory worker health. Sensors. 18(5):1411–1427. doi:10.3390/s18051411
  • TSI. 2002. Model 3007 condensation particle counter operation and service manual. Shoreview, MN: TSI Incorporated.
  • TSI. 2012. DusttrackTM DRX Aerosol Monitor Theory of Operation. Application Note EXPMN-002. Shoreview, MN: TSI Incorporated; [accessed 2021 Jan 5]. https://tsi.com/getmedia/1efa3785-c52d-491e-9cd1-10f30a01c997/EXPMN-002_DustTrak_DRX_Theory_of_Operation.
  • TSI. 2013. Optical Particle Sizer Spectrometer Model 3330 Operation and Service Manual. Shoreview, MN: TSI Incorporated.
  • Vo E, Horvatin M, Zhuang Z. 2018. Performance comparison of field portable instruments to the scanning mobility particle sizer using monodispersed and polydispersed sodium chloride aerosols. Ann Work Expo Health. 62(6):711–720. doi:10.1093/annweh/wxy036.
  • Vosburgh DJH, Boysen DA, Oleson JJ, Peters TM. 2011. Airborne nanoparticle concentrations in the manufacturing of polytetrafluoroethylene (PTFE) apparel. J Occup Environ Hyg. 8(3):139–146. doi:10.1080/15459624.2011.554317
  • Walser A, Sauer D, Spanu A, Gasteiger J, Weinzierl B. 2017. On the parametrization of optical particle counter response including instrument-induced broadening of size spectra and a self-consistent evaluation of calibration measurements. Atmos Meas Tech. 10:4341–4361. doi:10.5194/amt-10-4341-2017.
  • Wu C-F, Delfino RJ, Floro JN, Samimi BS, Quintana PJE, Kleinman MT, Sally Liu L-J. 2005. Evaluation and quality control of personal nephelometers in indoor, outdoor and personal environments. J Expo Anal Environ Epidemiol. 15(1):99–110. doi:10.1038/sj.jea.7500351.
  • Zhu Y, Yu N, Kuhn T, Hinds WC. 2006. Field comparison of P-trak and condensation particle counters. Aerosol Sci Tech. 40(6):422–430. doi:10.1080/02786820600643321
  • Zuidema C, Afshar-Mohajer N, Tatum M, Thomas G, Peters T, Koehler K. 2019. Efficacy of paired electrochemical sensors for measuring ozone concentrations. J Occup Environ Hyg. 16(2):179–190. doi:10.1080/15459624.2018.1540872.
  • Zuidema C, Sousan S, Stebounova LV, Gray A, Liu X, Tatum M, Stroh O, Thomas G, Peters T, Koehler K. 2019. Mapping occupational hazards with a multi-sensor network in a heavy-vehicle manufacturing facility. Ann Work Expo Health. 63(3):280–293. doi:10.1093/annweh/wxy111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.