484
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Intra-workday fluctuations of airborne contaminant concentration and the time-weighted average

References

  • Adams EM, Spencer HC, Rowe VK, McCollister DD, Irish, DD. 1952. Vapor toxicity of carbon tetrachloride determined by experiments on laboratory animals. AMA Arch Ind Hyg Occup Med. 6:50–66.
  • American Conference of Governmental Industrial Hygienists. 1958. Manual of analytical methods recommended for sampling and analysis of atmospheric contaminants. Cincinnati, OH: ACGIH.
  • American Conference of Governmental Industrial Hygienists. 2022. TLVs and BEIs, based on the documentation of the threshold limit values for chemical substances and physical agents & biological exposure indices. Cincinnati, OH: ACGIH.
  • Atherly G. 1985. A critical review of time-weighted average as an index of exposure and dose, and of its key elements. Am Ind Hyg Assoc J. 46(9):481–487. doi:10.1080/15298668591395210
  • Austin C, Roberge B, Goyer N. 2006. Cross-sensitivities of electrochemical detectors used to monitor worker exposures to airborne contaminants: false positive responses in the absence of target analytes. J Environ Monit. 8(1):161–166. doi:10.1039/b510084d.
  • Barsky JB, Que Hee SS, Clark CS. 1985. An evaluation of the response of some portable direct-reading 10.2 eV and 11.8 eV photoionization detectors, and a flame ionization gas chromatograph for organic vapors in high humidity atmospheres. Am Ind Hyg Assoc J. 46(1):9–14. doi:10.1080/15298668591394293.
  • Bloomfield JJ. 1933. Preliminary surveys of the industrial environment. Public Health Rep. 48(44):1343–1351. doi:10.2307/4580969
  • Buringh E, Lanting R. 1991. Exposure variability in the workplace: its implications for the assessment of compliance. Am Ind Hyg Assoc J. 52(1):6–13. doi:10.1080/15298669191364244.
  • Burrell GA, Seibert FM, Robertsonf IW. 1914. Technical paper 62, relative effects of carbon monoxide on small animals. Washington, D.C: U.S. Department of the Interior, Bureau of Mines.
  • Cavender F, Phillip S, Holland M. 2008. Development of emergency response planning guidelines (ERPGs). J Med Toxicol. 4(2):127–131. doi:10.1007/BF03160967.
  • Checkoway H, Rice CH. 1992. Time-weighted averages, peaks, and other indices of exposure in occupational epidemiology. Am J Ind Med. 21(1):25–33. doi:10.1002/ajim.4700210106.
  • Charsha RC, Linch AL. 1957. “Freon” powered portable air sampling kit. Am Ind Hyg Assoc Q. 18(2):135–138. doi:10.1080/00968205709343481.
  • Chelton CF, Zakraysek N, Lautner GM, Confer RG. 1983. Evaluation of the performance and response of the Bacharach TLV Sniffer and the H-Nu photoionization gas analyzer to common hydrocarbon solvents. Am Ind Hyg Assoc J. 44(10):710–715. doi:10.1080/15298668391405616.
  • Cross ES, Williams LR, Lewis DK, Magoon GR, Onasch TB, Kaminsky ML, Worsnop DR, Jayne JT. 2017. Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements. Atmos Meas Tech. 10(9):3575–3588. doi:10.5194/amt-10-3575-2017
  • David A, Frantik E, Holusa R, Nováková O. 1981. Role of time and concentration on carbon tetrachloride toxicity in rats. Int Arch Occup Environ Health. 48(1):49–60. doi:10.1007/BF00405931
  • Douglas DD. 1977. The curse of the 8-hr workday. Am Ind Hyg Assoc J. 38(4):A–6. doi:10.1080/0002889778507608.
  • Driscoll JN, Becker JH. 1979. Industrial hygiene monitoring with a variable selectivity photoionization detector. Am Lab. 11:69–73.
  • Driscoll JN. 2019. Chapter 7: photoionization. In: P.A. Smith and G.W. Cook, editors. Important Instrumentation and Method for the Detection of Chemicals in the Field. 2nd Ed. Falls Church (VA): AIHA. p. 91–105.
  • Fanti G, Spinazzè A, Borghi F, Rovelli S, Campagnolo D, Keller M, Borghi A, Cattaneo A, Cauda E, Cavallo DM. 2022. Evolution and applications of recent sensing technology for occupational risk assessment: a rapid review of the literature. Sensors. 22(13):4841. doi:10.3390/s22134841
  • Fraust CL, Hermann ER. 1966. Charcoal sampling tubes for organic vapor analysis by gas chromatography. Am Ind Hyg Assoc J. 27(1):68–74. doi:10.1080/00028896609342795.
  • Flury F. 1921. Ueber kampfgasvergiftungen: I ueber reizgase. Z f d g exp Med. 13(1):1–15. doi:10.1007/BF02998607
  • Gisclard JB, Rook JH, Andresen WV, Bradley WR. 1953. A simple device for air analysis. Am Ind Hyg Assoc Q. 14(1):23–25. doi:10.1080/00968205309343904.
  • Greenburg L, Smith GW. 1922. A new instrument for sampling aerial dusts. U.S. Bureau of Mines, Reports of Investigations No. 2392.
  • Greenburg L, Bloomfield JJ. 1932. The impinger dust sampling apparatus as used by the United States Public Health Service. Pub Hlth Reports. 47(12):654–675. doi:10.2307/4580381
  • Harrison RJ, Retzer K, Kosnett MJ, Hodgson M, Jordan T, Ridl S, Kiefer M. 2016. Sudden deaths among oil and gas extraction workers resulting from oxygen deficiency and inhalation of hydrocarbon gases and vapors – United States, January 2010–March 2015. MMWR Morb Mortal Wkly Rep. 65(1):6–9. doi:10.15585/mmwr.mm6501a2.
  • Hemingway MA, Walsh PT, Hardwick KR, Wilcox G. 2012. Evaluation of portable single-gas monitors for the detection of low levels of hydrogen sulfide and sulfur dioxide in petroleum industry environments. J Occup Environ Hyg. 9(5):319–328. doi:10.1080/15459624.2012.670794.
  • Henschler D. 1984. Exposure limits: history, philosophy, future developments. Ann Occup Hyg. 28(1):79–92. doi:10.1093/annhyg/28.1.79.
  • Hieftje GM. 2000. Atomic emission spectroscopy – it lasts and lasts and lasts. J Chem Educ. 77(5):577–583. doi:10.1021/ed077p577
  • Hill RJ, Smith PA. 2015. Exposure assessment for carbon dioxide gas: full shift average and short-term measurement approaches. J Occup Environ Hyg. 12(12):819–828. doi:10.1080/15459624.2015.1053894.
  • Hoover CR. 1921. The detection of carbon monoxide. J Ind Eng Chem. 13(9):770–772. doi:10.1021/ie50141a014
  • International Organization for Standardization/International Electrotechnical Commission. 2017. General requirements for the competence of testing and calibration laboratories, international standard. 3rd ed. Geneva, Switzerland: ISO/IEC 17025. p. 2017–11.
  • James AT, Martin AJP. 1952. Gas-liquid partition chromatography: the separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid. Biochem J. 50(5):679–690. doi:10.1042/bj0500679.
  • Johannessen LN, Grimstad HJ, Skjetne JE, Myklebust IN, Svendsen, KVH. 2020. Embedded systems and the internet of things: can low-cost gas sensors be used in risk assessment of occupational exposure? J Occup Environ Hyg. 17(10):495–503. doi:10.1080/15459624.2020.1798453.
  • Keenan RG, Byers DH, Saltzman BE, Hyslop FL. 1963. The “USPHS” method for determining lead in air and in biological materials. Am Ind Hyg Assoc J. 24:481–491. doi:10.1080/00028896309343251.
  • Keenan RG. 1967. Standardization of chemical methods in air sampling. Am Ind Hyg Assoc J. 28(2):144–147., doi:10.1080/00028896709342498.
  • Leidel NA, Busch KA, Lynch JR. 1977. Occupational exposure sampling strategy manual. Cincinnati OH: U.S. National Institute for Occupational Safety and Health. Publication No. 77-173.
  • Linch AL, Davis RB, Stalzer RF, Anzilotti WF. 1964. Studies of analytical methods for lead-in-air determination and use with an improved self-powered portable sampler. Am Ind Hyg Assoc J. 25:89–93. doi:10.1080/00028896409342559
  • Littlefield JB, Feight FL, Schrenk HH. 1937. Report of Investigations 3360, Bureau of Mines midget impinger for dust sampling. Washington, D.C: U.S. Department of the Interior, Bureau of Mines.
  • L’vov BV. 2005. Fifty years of atomic absorption spectroscopy. J Anal Chem. 60(4):382–392. doi:10.1007/s10809-005-0103-0
  • Mansur RH, Pero RF, Krause LA. 1959. Vapor phase chromatography in quantitative determination of air samples collected in the field. Am Ind Hyg Assoc J. 20(3):175–182. doi:10.1080/00028895909343693.
  • Marple VA. 2004. History of impactors-the first 110 years. Aerosol Sci Tech. 38(3):247–292. doi:10.1080/02786820490424347
  • Maslow AH. 1966. The psychology of science: a reconnaissance. New York (NY): Harper & Row, Publishers, Incorporated.
  • Miller FJ, Asgharian B, Schroeter JD, Price O. 2016. Improvements and additions to the multiple path particle dosimetry model. J. Aerosol Sci. 99:14–26. doi:10.1016/j.jaerosci.2016.01.018
  • Mokyr J. 1992. Technological inertia in economic history. J Eco History. 52(2):325–338. doi:10.1017/S0022050700010767
  • National Institute for Occupational Safety and Health. 1974. NIOSH manual of analytical methods. Cincinnati (OH): NIOSH. Report No. 74/00/00.
  • National Institute for Occupational Safety and Health. 1980. Development and validation of methods for sampling and analysis of workplace toxic substances. Cincinnati (OH): NIOSH. Report No. 80-133.
  • National Institute for Occupational Safety and Health. 2012. Components for evaluation of direct-reading monitors for gases and vapors. Cincinnati (OH): NIOSH. Report No. 2012-162.
  • National Institute for Occupational Safety and Health. 2019. Immediately dangerous to life or health (IDLH) values [accessed 21 May 2022]. https://www.cdc.gov/niosh/idlh/intridl4.html.
  • National Research Council. 2001. Standard operating procedure for developing acute exposure guideline levels for hazardous chemicals. Washington, D.C: National Academy Press.
  • Occupational Safety and Health Act. 1970. 29 U.S.C. §651 et seq.
  • Ornes S. 2016. The internet of things and the explosion of interconnectivity. Proc Natl Acad Sci U S A. 113(40):11059–11060. doi:10.1073/pnas.1613921113.
  • Peterson JE. 1988. The philosophy of occupational safety and health regulation. Am Ind Hyg Assoc J. 49(4):137–142. doi:10.1080/15298668891379521.
  • Podgórski D, Majchrzycka K, Dąbrowska A, Gralewicz G, Okrasa M. 2017. Towards a conceptual framework of OSH risk management in smart working environments based on smart PPE, ambient intelligence and the Internet of Things technologies. Int J Occup Saf Ergon. 23(1):1–20. doi:10.1080/10803548.2016.1214431.
  • Rappaport SM. 1991. Assessment of long-term exposures to toxic substances in air. Ann Occup Hyg. 35(1):61–121. doi:10.1093/annhyg/35.1.61.
  • Rappaport SM, Kromhout H, Symanski E. 1993. Variation of exposures between workers in homogeneous exposure groups. Am Ind Hyg Assoc J. 54(11):654–662. doi:10.1080/15298669391355198.
  • Roach SA. 1966. A more rational basis for air sampling programs. Am Ind Hyg Assoc J. 27(1):1–12. doi:10.1080/00028896609342786.
  • Rozman KK. 2000. The role of time in toxicology or Haber’s c×t product. Toxicology. 149(1):35–42. doi:10.1016/s0300-483x(00)00230-4.
  • Rushing DE. 1958. Gas chromatography in industrial hygiene and air pollution problems. Am Ind Hyg Assoc J. 19(3):238–245. doi:10.1080/00028895809343583.
  • Schulte HF. 1962. Modern concepts of air sampling and problems for the future. Am Ind Hyg Assoc J. 23:20–25. doi:10.1080/00028896209343196.
  • Sherwood RJ, Greenhalgh, DMS. 1960. A personal air sampler. Ann Occup Hyg. 2:127–132. doi:10.1093/annhyg/2.2.127.
  • Smith PA, Jackson Lepage C, Harrer KL, Brochu, PJ. 2007. Hand-held photoionization instruments for quantitative detection of sarin vapor and for rapid qualitative screening of contaminated objects. J Occup Environ Hyg. 4(10):729–738. doi:10.1080/15459620701547233.
  • Smith PA. 2012. Person-portable gas chromatography: rapid temperature program operation through resistive heating of columns with inherently low thermal mass. J Chromatogr A. 1261:37–45. doi:10.1016/j.chroma.2012.06.051.
  • Smith PA, Lodwick J, Dartt J, Amani JR, Fagan KM. 2017. Methemoglobinemia resulting from exposure in a confined space: exothermic self-polymerization of 4,4’-methylene diphenyl diisocyanate (MDI) material. J Occup Environ Hyg. 11:D13–D21. doi:10.1080/15459624.2016.1229484
  • Smith PA, Simmons MK, Toone P. 2018. Sensor-triggered sampling to determine instantaneous airborne vapor exposure concentrations. J Occup Environ Hyg. 15(6):510–517. doi:10.1080/15459624.2018.1453141.
  • Smith TJ. 2001. Studying peak exposure – toxicology and exposure statistics. In: M. Haberg, B. Knave, L. Lillienberg, and H. Westberg, editors. Exposure Assessment in Epidemiology and Practice. Stockholm, Sweden: National Institute for Working Life. Pp. 207–209.
  • Spear RC, Selvin S, Francis M. 1986. The influence of averaging time on the distribution of exposures. Am Ind Hyg Assoc J. 47(6):365–368. doi:10.1080/15298668691389883.
  • Statista. 2022. Number of internet of things (IoT) connected devices worldwide from 2019 to 2030, by vertical [accessed 2022 May 11]. https://www.statista.com/statistics/1194682/iot-connected-devices-vertically/.
  • Stokinger HE. 1964. Modus operandi of threshold limits committee of ACGIH. Am Ind Hyg Assoc. J. 25(6):589–594. doi:10.1080/00028896409342648
  • Stokinger HE. 1969. Current problems of setting occupational exposure standards. Arch Environ Health. 19(2):277–281. doi:10.1080/00039896.1969.10666841.
  • ten Berge WF, Zwart A, Appelman LM. 1986. Concentration-time mortality response of irritant and systemically acting vapours and gases. J Hazard Mater. 13(3):301–309. doi:10.1016/0304-3894(86)85003-8
  • Ulfvarson U. 1987. Assessment of concentration peaks in setting exposure limits for air contaminants at workplaces, with special emphasis on narcotic and irritative gases and vapors. Scand J Work Environ Health. 13(5):389–398. doi:10.5271/sjweh.2022.
  • U.S. Department of Labor. 2017. Part 1910 – occupational safety and health standards, subpart Z-toxic and hazardous substances. 29 C.F.R. Sect. 1910.1000.
  • U.S. Department of Labor. 1993. Standard interpretations, inert gas as it applies to the hazard communication standard [accessed 2022 September 1]. https://www.osha.gov/laws-regs/standardinterpretations/1993-03-04-0.
  • U.S. Environmental Protection Agency. 1994. Methods of derivation of inhalation reference concentrations and application of inhalation dosimetry [accessed 5 September 2022] https://www.epa.gov/sites/default/files/2014-11/documents/rfc_methodology.pdf.
  • U.S. Environmental Protection Agency. 2021. EPA background briefing: EPA multi-path particle dosimetry (MPPD) model 2021(v. 1.01) technical support documentation and user’s guide [accessed 5 September 2022]. https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryId=351875&Lab=CPHEA.
  • U.S. Environmental Protection Agency. 2022. Acute exposure guideline levels for airborne chemicals [accessed 4 September 2022]. https://www.epa.gov/aegl.
  • Virji MA, Kurth L. 2021. Peak inhalation exposure metrics used in occupational epidemiologic and exposure studies. Front. Public Health 8:611693. doi:10.3389/fpubh.2020.611693
  • Walsh A. 1955. The application of atomic absorption spectra to chemical analysis. Spectrochim Acta. 7:108–117. doi:10.1016/0371-1951(55)80013-6
  • Wang J, Nuñovero N, Nidetz R, Peterson SJ, Brookover BM, Steinecker WH, Zellers E. 2019. Belt-mounted micro-gas-chromatograph prototype for determining personal exposures to volatile-organic-compound mixture components. Anal Chem. 91(7):4747–4754. doi:10.1021/acs.analchem.9b00263.
  • Wang R. 2002. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? Faseb J. 16(13):1792–1798. doi:10.1096/fj.02-0211hyp.
  • Wang R. 2012. Shared signaling pathways among gasotransmitters. Proc Natl Acad Sci USA. 109(23):8801–8802. doi:10.1073/pnas.1206646109.
  • Watanabe K, Zelikoff M. 1953. Absorption coefficients of water vapor in the vacuum ultraviolet. J Opt Soc Am. 43(9):753–754. doi:10.1364/JOSA.43.000753
  • Witschi H. 1999. Some notes on the history of Haber’s law. Toxicol Sci. 50(2):164–168. doi:10.1093/toxsci/50.2.164.
  • Yant W. 1930. Hydrogen sulphide in industry: occurrence, effects, and treatment. Am J Public Health Nations Health. 20(6):598–608. doi:10.2105/ajph.20.6.598.
  • Yant W. 1948. Industrial hygiene codes and regulations. In Industrial Hygiene Foundation Transactions of 13th Annual Meeting, Pittsburgh, PA. p. 48–61.
  • Zuidema C, Stebounova LV, Sousan S, Thomas G, Koehler K, Peters TM. 2019a. Sources of error and variability in particulate matter sensor network measurements. J Occup Environ Hyg. 16(8):564–574. doi:10.1080/15459624.2019.1628965.
  • Zuidema C, Sousan S, Stebounova LV, Gray A, Liu X, Tatum M, Stroh O, Thomas G, Peters T, Koehler K. 2019b. Mapping occupational hazards with a multi-sensor network in a heavy-vehicle manufacturing facility. Ann Work Expo Health. 63(3):280–293. doi:10.1093/annweh/wxy111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.