456
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessment of indoor bioaerosol exposure using direct-reading versus traditional methods—potential application to home health care

, , , , , & ORCID Icon show all

References

  • Addor YS, Baumgardner D, Hughes D, Newman N, Jandarov R, Reponen T. 2022. Assessing residential indoor and outdoor bioaerosol characteristics using the ultraviolet light-induced fluorescence-based wideband integrated bioaerosol sensor. Environ Sci Process Impacts. 24(10):1790–1804. doi:10.1039/D2EM00177B.
  • Agranovski V, Ristovski Z, Blackall PJ, Morawska L. 2004. Size-selective assessment of airborne particles in swine confinement building with the UVAPS. Atmos Environ. 38(23):3893–3901. doi:10.1016/j.atmosenv.2004.02.058.
  • Arif AA, Delclos GL, Serra C. 2009. Occupational exposures and asthma among nursing professionals. Occup Environ Med. 66(4):274–LP–278. doi:10.1136/oem.2008.042382.
  • Baron PA, Willeke K. 2001. Aerosol measurement: principles, techniques, and applications. 2nd ed. New York: Wiley.
  • Beigelman A, Weinstock GM, Bacharier LB. 2014. The relationships between environmental bacterial exposure, airway bacterial colonization, and asthma. Curr Opin Allergy Clin Immunol. 14(2):137–142. doi:10.1097/ACI.0000000000000036.
  • Bhangar S, Huffman JA, Nazaroff WW. 2014. Size-resolved fluorescent biological aerosol particle concentrations and occupant emissions in a university classroom. Indoor Air. 24(6):604–617. doi:10.1111/ina.12111.
  • Bureau of Labor Statistics USD of L. 2021. Home health and personal care aides. [accessed 2021 Dec 23]. https://www.bls.gov/ooh/healthcare/home-health-aides-and-personal-care-aides.htm#tab-6.
  • Byeon JH, Ri S, Amarsaikhan O, Kim E, Ahn SH, Choi IS, Kim HJ, Seo S, Yoon W, Yoo Y. 2017. Association between sensitization to mold and impaired pulmonary function in children with asthma. Allergy Asthma Immunol Res. 9(6):509–516. doi:10.4168/aair.2017.9.6.509.
  • Caillaud D, Leynaert B, Keirsbulck M, Nadif R. 2018. Indoor mould exposure, asthma and rhinitis: findings from systematic reviews and recent longitudinal studies. Eur Respir Rev. 27(148):170137. doi:10.1183/16000617.0137-2017.
  • Calvo AI, Baumgardner D, Castro A, Fernández-González D, Vega-Maray AM, Valencia-Barrera RM, Oduber F, Blanco-Alegre C, Fraile R. 2018. Daily behavior of urban fluorescing aerosol particles in northwest Spain. Atmos Environ. 184(April):262–277. doi:10.1016/j.atmosenv.2018.04.027.
  • CDC National Center for Chronic Disease Prevention and Health Promoting Health. 2022. Promoting health for older adults. [accessed 2021 Oct 1]. https://www.cdc.gov/chronicdisease/resources/publications/factsheets/promoting-health-for-older-adults.htm#print.
  • Cox J, Indugula R, Vesper S, Zhu Z, Jandarov R, Reponen T. 2017. Comparison of indoor air sampling and dust collection methods for fungal exposure assessment using quantitative PCR. Environ Sci Process Impacts. 19(10):1312–1319. doi:10.1039/C7EM00257B.
  • Cox J, Mbareche H, Lindsley WG, Duchaine C. 2020. Field sampling of indoor bioaerosols. Aerosol Sci Technol. 54(5):572–584. doi:10.1080/02786826.2019.1688759.
  • Dannemiller KC, Lang-Yona N, Yamamoto N, Rudich Y, Peccia J. 2014. Combining real-time PCR and next-generation DNA sequencing to provide quantitative comparisons of fungal aerosol populations. Atmos Environ. 84:113–121. doi:10.1016/j.atmosenv.2013.11.036.
  • Dannemiller KC, Mendell MJ, Macher JM, Kumagai K, Bradman A, Holland N, Harley K, Eskenazi B, Peccia J. 2015. Next-generation DNA sequencing reveals that low fungal diversity in house dust is associated with childhood asthma development. Indoor Air. 24(3):236–247. 10.1111/ina.12072
  • Davitt K, Song Y-K, Patterson III WR, Nurmikko AV, Gherasimova M, Han J, Pan Y-L, Chang RK. 2005. 290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles. Opt Express. 13(23):9548–9555. doi:10.1364/opex.13.009548.
  • Denning DW, O'Driscoll BR, Hogaboam CM, Bowyer P, Niven RM. 2006. The link between fungi and severe asthma: a summary of the evidence. Eur Respir J. 27(3):615–626. doi:10.1183/09031936.06.00074705.
  • Després VR, Huffman JA, Burrows SM, Hoose C, Safatov AS, Buryak G, Fröhlich-Nowoisky J, Elbert W, Andreae MO, Pöschl U, et al. 2012. Primary biological aerosol particles in the atmosphere: a review. Tellus B Chem Phys Meteorol. 64(1):15598. doi:10.3402/tellusb.v64i0.15598.
  • Douwes J, Thorne P, Pearce N, Heederik D. 2003. Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg. 47(3):187–200. doi:10.1093/annhyg/meg032.
  • Edgar RC. 2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 10(10):996–998. doi:10.1038/nmeth.2604.
  • Eduard W, Bang BE, Aasmoe L, Madsen AM, Thomassen MR, Lopata AL, Kamath SD. 2016. Occupational exposure to bioaerosols in norwegian crab processing plants. Ann Occup Hyg. 60(7):781–794. doi:10.1093/annhyg/mew030.
  • Faridi S, Hassanvand MS, Naddafi K, Yunesian M, Nabizadeh R, Sowlat MH, Kashani H, Gholampour A, Niazi S, Zare A, et al. 2015. Indoor/outdoor relationships of bioaerosol concentrations in a retirement home and a school dormitory. Environ Sci Pollut Res Int. 22(11):8190–8200. doi:10.1007/s11356-014-3944-y.
  • Feeney P, Rodríguez SF, Molina R, McGillicuddy E, Hellebust S, Quirke M, Daly S, O'Connor D, Sodeau J. 2018. A comparison of on-line and off-line bioaerosol measurements at a biowaste site. Waste Manag. 76:323–338. doi:10.1016/j.wasman.2018.02.035.
  • Frankel M, Timm M, Hansen EW, Madsen AM. 2012. Comparison of sampling methods for the assessment of indoor microbial exposure. Indoor Air. 22(5):405–414. doi:10.1111/j.1600-0668.2012.00770.x.
  • Gao M, Qiu T, Jia R, Han M, Song Y, Wang X. 2014. Concentration and size distribution of viable bioaerosols during non-haze and haze days in Beijing. Environ Sci Pollut Res Int. 22(6):4359–4368. doi:10.1007/s11356-014-3675-0.
  • Georgakopoulos DG, Després V, Fröhlich-Nowoisky J, Psenner R, Ariya PA, Pósfai M, Ahern HE, Moffett BF, Hill TCJ. 2009. Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles. Biogeosciences. 6(4):721–737. doi:10.5194/bg-6-721-2009.
  • Gosselin MI, Rathnayake CM, Crawford I, Pöhlker C, Fröhlich-Nowoisky J, Schmer B, Després VR, Engling G, Gallagher M, Stone E, et al. 2016. Fluorescent bioaerosol particle, molecular tracer, and fungal spore concentrations during dry and rainy periods in a semi-arid forest. Atmos Chem Phys. 16(23):15165–15184. doi:10.5194/acp-16-15165-2016.
  • Haig CW, Mackay WG, Walker JT, Williams C. 2016. Bioaerosol sampling: sampling mechanisms, bioefficiency, and field studies. J Hosp Infect. 93(3):242–255. doi:10.1016/j.jhin.2016.03.017.
  • Handorean A, Robertson CE, Harris JK, Frank D, Hull N, Kotter C, Stevens MJ, Baumgardner D, Pace NR, Hernandez M. 2015. Microbial aerosol liberation from soiled textiles isolated during routine residuals handling in a modern health care setting. Microbiome. 3(1):72. doi:10.1186/s40168-015-0132-3.
  • Haugland RA, Brinkman N, Vesper SJ. 2002. Evaluation of rapid DNA extraction methods for the quantitative detection of fungi using real-time PCR analysis. J Microbiol Methods. 50(3):319–323. doi:10.1016/S0167-7012(02)00037-4.
  • Hernandez M, Perring AE, McCabe K, Kok G, Granger G, Baumgardner D. 2016. Chamber catalogues of optical and fluorescent signatures distinguish bioaerosol classes. Atmos Meas Tech. 9(7):3283–3292. doi:10.5194/amt-9-3283-2016.
  • Hospodsky D, Qian J, Nazaroff WW, Yamamoto N, Bibby K, Rismani-Yazdi H, Peccia J. 2012. Human occupancy as a source of indoor airborne bacteria. PLoS One. 7(4):e34867–e34867. doi:10.1371/journal.pone.0034867.
  • Huffman JA, Sinha B, Garland RM, Snee-Pollmann A, Gunthe SS, Artaxo P, Martin ST, Andreae MO, Pöschl U. 2012. Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08. Atmos Chem Phys. 12(24):11997–12019. doi:10.5194/acp-12-11997-2012.
  • Jaenicke R, Matthias-Maser S, Gruber S. 2007. Omnipresence of biological material in the atmosphere. Environ Chem. 4(4):217–220. doi:10.1071/EN07021.
  • Jahangiri M, Neghab M, Nasiri G, Aghabeigi M, Khademian V, Rostami R, Kargar V, Rasooli J. 2015. Respiratory disorders associated with occupational inhalational exposure to bioaerosols among wastewater treatment workers of petrochemical complexes. Int J Occup Environ Med. 6(1):41–49. doi:10.15171/ijoem.2015.458.
  • Jenkins PL, Phillips TJ, Mulberg EJ, Hui SP. 1992. Activity patterns of Californians: Use of and proximity to indoor pollutant sources. Atmos Environ Part A, Gen Top. 26(12):2141–2148. doi:10.1016/0960-1686(92)90402-7.
  • Kanaani H, Hargreaves M, Smith J, Ristovski Z, Agranovski V, Morawska L. 2008. Performance of UVAPS with respect to detection of airborne fungi. J Aerosol Sci. 39(2):175–189. doi:10.1016/j.jaerosci.2007.10.007.
  • Kaye PH, Barton JE, Hirst E, Clark JM. 2000. Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles. Appl Opt. 39(21):3738–3745. doi:10.1364/AO.39.003738.
  • Kaye PH, Stanley WR, Hirst E, Foot EV, Baxter KL, Barrington SJ. 2005. Single particle multichannel bio-aerosol fluorescence sensor. Opt Express. 13(10):3583–3593. doi:10.1364/OPEX.13.003583.
  • Kepner Jr RL, Pratt JR. 1994. Use of fluorochromes for direct enumeration of total bacteria in environmental samples: Past and present. Microbiol Rev. 58(4):603–615. doi:10.1128/mmbr.58.4.603-615.1994.
  • Kielb C, Lin S, Muscatiello N, Hord W, Rogers-Harrington J, Healy J. 2015. Building-related health symptoms and classroom indoor air quality: a survey of school teachers in New York State. Indoor Air. 25(4):371–380. doi:10.1111/ina.12154.
  • Kim K-H, Kabir E, Jahan SA. 2018. Airborne bioaerosols and their impact on human health. J Environ Sci (China). 67:23–35. doi:10.1016/j.jes.2017.08.027.
  • Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, Behar JV, Hern SC, Engelmann WH, Lawrence Berkeley National Lab. CA (US). 2001. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol. 11(3):231–252. doi:10.1038/sj.jea.7500165.
  • Lacey J, Dutkiewicz J. 1994. Bioaerosols and occupational lung disease. J Aerosol Sci. 25(8):1371–1404. doi:10.1016/0021-8502(94)90215-1.
  • Li J, Wan MP, Schiavon S, Tham KW, Zuraimi S, Xiong J, Fang M, Gall E. 2020. Size‐resolved dynamics of indoor and outdoor fluorescent biological aerosol particles in a bedroom: a one‐month case study in Singapore. Indoor Air. 30(5):942–954. doi:10.1111/ina.12678.
  • Lindsley WG, Green BJ, Blachere FM, Martin SB, Law BF, Jensen PA, Schafer MP. 2017. Sampling and characterization of bioaerosols. In NIOSH Manual of Analytical Methods (NMAM). 5th ed. U.S. DHHS, CDC/NIOSH. p. BA-10-BA-27.
  • Madureira J, Paciência I, Rufo J, Ramos E, Barros H, Teixeira JP, de Oliveira Fernandes E. 2015. Indoor air quality in schools and its relationship with children’s respiratory symptoms. Atmos Environ. 118:145–156. doi:10.1016/j.atmosenv.2015.07.028.
  • Mazurek JM, Mazurek JM, Syamlal G, Syamlal G. 2018. Prevalence of asthma, asthma attacks, and emergency department visits for asthma among working adults - National Health Interview Survey (NHIS), 2011-2016. MMWR Morb Mortal Wkly Rep. 67(13):377–386. doi:10.15585/mmwr.mm6713a1.
  • Mazurek J, Syamlal G. 2016. Current asthma prevalence in working adults—United States, 2009–2014. J Allergy Clin Immunol. 139(2):AB23. doi:10.1016/j.jaci.2016.12.032.
  • Nadkarni MA, Martin FE, Jacques NA, Hunter N. 2002. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology (Reading). 148(Pt 1):257–266. doi:10.1099/00221287-148-1-257.
  • Nathu VD, Virkutyte J, Rao MB, Nieto-Caballero M, Hernandez M, Re T. 2022. Direct-read fluorescence-based measurements of bioaerosol ex- posure in home healthcare. Int J Environ Res Public Heal. 19:3613. doi:10.3390/ijerph19063613.
  • Nieto-Caballero M, Gomez OM, Shaughnessy R, Hernandez M. 2022. Aerosol fluorescence, airborne hexosaminidase, and quantitative genomics distinguish reductions in airborne fungal loads following major school renovations. Indoor Air. 32(1):e12975. doi:10.1111/ina.12975.
  • NIOSH. 2010. Review of occupational hazards in home healthcare. Ergon Des Q Hum Factors Appl. 18(1):27. doi:10.1518/106480410X12676454887260. [accessed 2021 Apr 1]. https://www.cdc.gov/niosh/docs/2010-125/pdfs/2010-125.pdf?id=10.26616/NIOSHPUB2010.
  • O’Connor DJ, Iacopino D, Healy DA, O’Sullivan D, Sodeau JR. 2011. The intrinsic fluorescence spectra of selected pollen and fungal spores. Atmos Environ. 45(35):6451–6458. doi:10.1016/j.atmosenv.2011.07.044.
  • Pan YL, Pinnick RG, Hill SC, Rosen JM, Chang RK. 2007. Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico. J Geophys Res. 112(D24):1–15. doi:10.1029/2007JD008741.
  • Park J-H, Cox-Ganser JM, Kreiss K, White SK, Rao CY. 2008. Hydrophilic fungi and ergosterol associated with respiratory illness in a water-damaged building. Environ Health Perspect. 116(1):45–50. doi:10.1289/ehp.10355.
  • Pearson C, Littlewood E, Douglas P, Robertson S, Gant TW, Hansell AL. 2015. Exposures and health outcomes in relation to bioaerosol emissions from composting facilities: a systematic review of occupational and community studies. J Toxicol Environ Health B Crit Rev. 18(1):43–69. doi:10.1080/10937404.2015.1009961.
  • Perring AE, Schwarz JP, Baumgardner D, Hernandez MT, Spracklen DV, Heald CL, Gao RS, Kok G, McMeeking GR, McQuaid JB, et al. 2015. Airborne observations of regional variation in fluorescent aerosol across the United States. J Geophys Res Atmos. 120(3):1153–1170. doi:10.1002/2014JD022495.
  • Pöhlker C, Huffman JA, Pöschl U. 2012. Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences. Atmos Meas Tech. 5(1):37–71. doi:10.5194/amt-5-37-2012.
  • Pöschl U. 2005. Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Ed Engl. 44(46):7520–7540. doi:10.1002/anie.200501122.
  • Qian J, Peccia J, Ferro AR. 2014. Walking-induced particle resuspension in indoor environments. Atmos Environ. 89:464–481. doi:10.1016/j.atmosenv.2014.02.035.
  • Reponen T, Lockey J, Bernstein DI, Vesper SJ, Levin L, Khurana Hershey GK, Zheng S, Ryan P, Grinshpun SA, Villareal M, et al. 2012. Infant origins of childhood asthma associated with specific molds. J Allergy Clin Immunol. 130(3):639–644.e5. doi:10.1016/j.jaci.2012.05.030.
  • Reponen T, Willeke K, Grinshpun S, Nevalainen A. 2011. Biological particle sampling. In: Pramod Kulkarni, Paul A. Baron KW, editor. Aerosol measurement: principles, techniques, and applications. 3th ed. New York: Wiley. p. 549–557.
  • RTL Genomics. 2019. Data analysis methodology for microbial diversity. [accessed 2020 Apr 19]. http://www.rtlgenomics.com/docs/Data_Analysis_Methodology.pdf.
  • Ruske S, Topping DO, Foot VE, Morse AP, Gallagher MW. 2018. Machine learning for improved data analysis of biological aerosol using the WIBS. Atmos Meas Tech. 11(11):6203–6230. doi:10.5194/amt-11-6203-2018.
  • Saari SE, Putkiranta MJ, Keskinen J. 2013. Fluorescence spectroscopy of atmospherically relevant bacterial and fungal spores and potential interferences. Atmos Environ. 71:202–209. doi:10.1016/j.atmosenv.2013.02.023.
  • Savage NJ, Krentz CE, Könemann T, Han TT, Mainelis G, Pöhlker C, Huffman JA. 2017. Systematic characterization and fluorescence threshold strategies for the wideband integrated bioaerosol sensor (WIBS) using size-resolved biological and interfering particles. Atmos Meas Tech. 10(11):4279–4302. doi:10.5194/amt-10-4279-2017.
  • Sharma Ghimire P, Tripathee L, Chen P, Kang S. 2019. Linking the conventional and emerging detection techniques for ambient bioaerosols: a review. Rev Environ Sci Biotechnol. 18(3):495–523. doi:10.1007/s11157-019-09506-z.
  • Stone R, Sutton JP, Bryant N, Adams A, Squillace M. 2013. The home health workforce: a distinction between worker categories. Home Health Care Serv Q. 32(4):218–233. doi:10.1080/01621424.2013.851049.
  • Tian Y, Liu Y, Misztal PK, Xiong J, Arata CM, Goldstein AH, Nazaroff WW. 2018. Fluorescent biological aerosol particles: concentrations, emissions, and exposures in a northern California residence. Indoor Air. 28(4):559–571. doi:10.1111/ina.12461.
  • Toprak E, Schnaiter M. 2013. Fluorescent biological aerosol particles measured with the waveband integrated bioaerosol sensor WIBS-4: laboratory tests combined with a one year field study. Atmos Chem Phys. 13(1):225–243. doi:10.5194/acp-13-225-2013.
  • US EPA Office of Air and Radiation. 1989. Report to Congress on indoor air quality: volume II - assessment and control of indoor air pollution. Washington, DC.
  • van Kampen V, Deckert A, Hoffmeyer F, Taeger D, Brinkmann E, Brüning T, Raulf-Heimsoth M, Bünger J. 2012. Symptoms, spirometry, and serum antibody concentrations among compost workers exposed to organic dust. J Toxicol Environ Health A. 75(8–10):492–500. doi:10.1080/15287394.2012.674918.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.