2,566
Views
0
CrossRef citations to date
0
Altmetric
Comment

Cancer risk assessment, its wretched history and what it means for public health

References

  • Albert RE. 1994. Carcinogen risk assessment in the US Environmental Protection Agency. Crit Rev Toxicol. 24(1):75–85. doi: 10.3109/10408449409017920.
  • Calabrese EJ. 2006. What is the purpose of a risk assessment? Hum Exp Toxicol. 25(1):1–1. doi: 10.1191/0960327106ht576xx.
  • Calabrese EJ. 2015. On the origins of the linear no-threshold (LNT) dogma by means of untruths, artful dodges and blind faith. Environ Res. 142:432–442. doi: 10.1016/j.envres.2015.07.011.
  • Calabrese EJ. 2017a. Flaws in the LNT single-hit model for cancer risk: an historical assessment. Environ Res. 158:773–788. doi: 10.1016/j.envres.2017.07.030.
  • Calabrese EJ. 2017b. The threshold vs LNT showdown. Dose rate findings exposed flaws in the LNT model. Part 1. The Russell-Muller debate. Environ Res. 154:452–458. doi: 10.1016/j.envres.2016.11.024.
  • Calabrese EJ. 2017c. The threshold vs LNT showdown. Dose rate findings exposed flaws in the LNT model. Part 2. How a mistake led BEIR I to adopt LNT. Environ Res. 154:452–458. doi: 10.1016/j.envres.2016.11.024.
  • Calabrese EJ. 2018. From Muller to mechanism: how LNT became the default model for cancer risk assessment. Environ Pollut. 241:289–302. doi: 10.1016/j.envpol.2018.05.051.
  • Calabrese EJ. 2019a. The linear no-threshold (LNT) dose response model: a comprehensive assessment of its historical and scientific foundation. Chem Biol Interact. 301:6–25. doi: 10.1016/j.cbi.2018.11.020.
  • Calabrese EJ. 2019b. Muller’s Nobel Prize data: getting the dose wrong and its significance. Environ Res. 176:108528. doi: 10.1016/j.envres.2019.108528.
  • Calabrese EJ. 2020a. Ethical failures: the problematic history of cancer risk assessment. Environ Res. 193:110582. doi: 10.1016/j.envres.2020.110582.
  • Calabrese EJ. 2020b. The Muller-Neel dispute and the fate of cancer risk assessment. Environ Res. 190:109961. doi: 10.1016/j.envres.2020.109961.
  • Calabrese EJ. 2021. LNT and cancer risk assessment: its flawed foundations, Part 1: radiation and leukemia: where LNT began. Environ Res. 197:111025. doi: 10.1016/j.envres.2021.111025.
  • Calabrese EJ. 2022. Linear non-threshold (LNT) fails numerous toxicological stress tests: implications for continued policy use. Chem Biol Interact. 365:110064. doi: 10.1016/j.cbi.2022.110064.
  • Calabrese EJ. 2023. The Gofman-Tamplin cancer risk controversy and its impact on the creation of BEIR1 and the acceptance of LNT. Medi Lavoro. 114:e2023007.
  • Calabrese EJ, Giordano J. 2022. Ethical issues in the US 1956 National Academy of Sciences BEAR I Genetics Panel Report to the Public. Health Phys. 123(5):387–391. doi: 10.1097/HP.0000000000001608.
  • Calabrese EJ, Selby P. 2022. Cover up and cancer risk assessment: prominent US scientists suppressed evidence to promote adoption of LNT. Environ Res. 210:112973. doi: 10.1016/j.envres.2022.112973.
  • Calabrese EJ, Selby PB. 2023. Background radiation and cancer risks: a major intellectual confrontation within the domain of radiation genetics with multiple converging biological disciplines. J Occup Environ Hyg. 29:1–34.
  • Calabrese EJ, Shamoun DY, Agathokleous E. 2022. Dose response and risk assessment: evolutionary foundations. Environ Pollut. 309:119787. doi: 10.1016/j.envpol.222.119787.
  • Caspari E. 1947. Letter to Curt Stern. American Philosophical Society. Stern Papers, Caspari File. September 25, 1947.
  • Caspari E, Stern C. 1948. The influence of chronic irradiation with gamma-rays at low dosages on the mutation rate in Drosophila melanogaster. Genetics. 33(1):75–95. doi: 10.1093/genetics/33.1.75.
  • Cosgrove GE, Selby PB, Upton AC, Mitchell TJ, Steele MH, Russell WL. 1993. Lifespan and autopsy findings in the 1st generation offspring of Z-irradiated male mice. Mutat Res. 319(1):71–79. doi: 10.1016/0165-1218(93)90032-9.
  • DuShane G. 1957. Loaded dice. Science. 125(3255):963–963. doi: 10.1126/science.125.3255.963.
  • Evans RD. 1949. Quantitative inferences concerning the genetic effects of radiation on human beings. Science. 109(2830):299–304. doi: 10.1126/science.109.2830.299.
  • EPA. 2004. An examination of EPA risk assessment principles and practices. EPA/100/B/001. Washington (DC).
  • Glass B. 1957. Genetic hazards of nuclear radiations. Science. 126(3267):241–246. doi: 10.1126/science.126.3267.241.
  • Lewis EB. 1957. Leukemia and ionizing radiation. Science. 125(3255):965–972. doi: 10.1126/science.125.3255.965.
  • Muller HJ. 1929. The method of evolution. Sci Mon. 29:481–505.
  • Muller HJ. 1946. The production of mutations. Nobel Lecture, 1946. Nobleprize.org http:www.nobelprize.org/nobel-prizes/medicine/laureates/1946.
  • Muller HJ. 1950a. Radiation damage to the genetic material. Am Sci. 38:32–59.
  • Muller HJ. 1950b. Some present problems with genetic effects of radiation. J Cell Comp Physiol. 35:9–70.
  • Muller HJ. 1954. The manner of production of mutations by radiation. 1. In: Hollaender A, editor. Radiation biology Vol 1. High energy radiation. New York (NY): McGraw Jill Book Company; p. 475–626.
  • National Academy of Sciences (NAS)/National Research Council (NRC). 1956. The Biological Effects of Atomic Radiation (BEAR): a report to the public. Washington (DC): NAS/NRC.
  • Neel JV, Schull WJ. 1956. Studies on the potential genetic effects of the atomic bombs. Acta Genet Stat Med. 6(2):183–196. doi: 10.1159/000150821.
  • Ray-Chaudhuri SP. 1944. The validity of the Bunsen-Roscoe law in the production of mutations by radiation of extremely low intensity. Proc Sect B Biol. 62(1):66–72. doi: 10.1017/S0080455X00011826.
  • Russell LB, Russell WL. 1996. Spontaneous mutations recovered as mosaics in the mouse specific-locus test. Proc Natl Acad Sci USA. 93(23):13072–13077. doi: 10.1073/pnas.93.23.13072.
  • Russell WL, Russell LB, Kelly EM. 1958. Radiation dose rate and mutation frequency. Science. 128(3338):1546–1550. doi: 10.1126/science.128.3338.1546.
  • Selby PB, Calabrese EJ. 2023. How self-interest and deception led to the adoption of the linear non-threshold dose response (LNT) model for cancer risk assessment. Sci Total Environ. 898:165402. doi: 10.1016/j.scitotenv.2023.165402.
  • Spencer WP, Stern C. 1948. Experiments to test the validity of the linear R-dose mutation frequency relation in Drosophila at low dosage. Genetics. 33(1):43–74. doi: 10.1093/genetics/33.1.43.
  • Sturtevant AH. 1954. Social implications of the genetics of man. Science. 120(3115):405–407. doi: 10.1126/science.120.3115.405.
  • Uphoff D, Stern C. 1947. Influence of 24-hour gamma-ray irradiation at low dosage on the mutton rate in Drosophila. MDDC-1492. US Atomic Energy Commission.
  • Uphoff D, Stern C. 1949. The genetic effects of low intensity irradiation. Science. 109(2842):609–610. doi: 10.1126/science.109.2842.609.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.