1,772
Views
12
CrossRef citations to date
0
Altmetric
Editorial

Dynamic Modeling for Intelligent Transportation System Applications

REFERENCES

  • Abbas, M., Rajasekhar, L., Gharat, A., & Dunning, J.P. (2013). Microscopic modeling of control delay at signalized intersections based on bluetooth data. J. Intelligent Transport. Systems Technol. Plan. Operations, 17(2), 110–122.
  • Anand, A., Ramadurai, G., & Vanajakshi, L. (2014). Data fusion-based traffic density estimation and prediction. J. Intelligent Transport. Systems Technol. Plan. Operations, 18(4), 367–378.
  • Bifulco, G.N., Cantarella, G.E., & Simonelli, F. (2014). Design of signal setting and advanced traveller information systems. J. Intelligent Transport. Systems Technol. Plan. Operations, 18(1), 30–40.
  • Chen, B.Y., Lam, W.H. K., Sumalee, A., Li, Q., & Tam, M.L. (2014). Reliable shortest path problems in stochastic time-dependent networks. J. Intelligent Transport. Systems Technol. Plan. Operations, 18(2), 177–189.
  • Chiou, Y.-C., Lan, L.W., & Tseng, C.-M. (2014). A novel method to predict traffic features based on rolling self-structured traffic patterns. J. Intelligent Transport. Systems Technol. Plan. Operations, 18(4), 352–366.
  • Espinosa-Aranda, J.L., & García-Ródenas, R. (2012). A discrete event-based simulation model for real-time traffic management in railways. J. Intelligent Transport. Systems Technol. Plan. Operations, 16(2), 94–107.
  • Flötteröd, G., & Liu, R. (2014). Disaggregate path flow estimation in an iterated dynamic traffic assignment microsimulation. J. Intelligent Transport. Systems Technol. Plan. Operations, 18(2), 204–214.
  • Frederix, R., Viti, F., Himpe, W.W. E., & Tampère, C.M. J. (2014). Dynamic origin–destination matrix estimation on large-scale congested networks using a hierarchical decomposition scheme. J. Intelligent Transport. Systems Technol. Plan. Operations, 18(1), 51–66.
  • Friesz, T.L., & Meimanda, A. (2014). A differential variational inequality formulation of dynamic network user equilibrium with elastic demand. Transportmetrica A Transport Sci, 10(7), 661–668.
  • Ghosh, B., & Smith, D.P. (2014). Customization of automatic incident detection algorithms for signalized urban arterials. J. Intelligent Transport. Systems Technol. Plan. Operations, 18(4), 426–441.
  • Guo, L., Huang, S., & Sadek, A.W. (2013). An evaluation of environmental benefits of time-dependent green routing in the Greater Buffalo–Niagara Region. J. Intelligent Transport. Systems Technol. Plan. Operations, 17(1), 18–30.
  • Hamdouch, Y., Ho, H.W., Sumalee, A., & Wang, G. (2011). Schedule-based transit assignment model with vehicle capacity and seat availability. Transport. Res. Part B Methodol., 45, 1805–1830.
  • Kim, J., Kurauchi, F., Uno, N., Hagihara, T., & Daito, T. (2014). Using electronic toll collection data to understand traffic demand. J. Intelligent Transport. Systems Technol. Plan. Operations, 18(2), 190–203.
  • Li, Z.C. (2011). Modeling arterial signal optimization with enhanced cell transmission formulations. J. Transport. Eng. ASCE, 137(7), 445–454.
  • Liu, D., & Lam, W.H. K. (2014). Modeling the effects of population density on prospect theory-based travel mode-choice equilibrium. J. Intelligent Transport. Systems Technol. Plan. Operations, 18(4), 379–392.
  • Lo, H.K., & Szeto, W.Y. (2002). A cell-based dynamic traffic assignment model: Formulation and properties. Math. Computer Model., 35(7–8), 849–865.
  • Lo, H.K., & Szeto, W.Y. (2005). Road pricing modeling for hyper-congestion. Transport. Res. Part A, 39(7–9), 705–722.
  • Lo, H.K., & Szeto, W.Y. (2009). Time-dependent transport network design under cost-recovery. Transport. Res. Part B Methodol., 43(1), 142–158.
  • Long, J.C., Gao, Z.Y., & Szeto, W.Y. (2011). Discretised link travel time models based on cumulative flows: Formulations and properties. Transport. Res. Part B Methodol. 45(1), 232–254.
  • Mesa-Arango, R., & Ukkusuri, S.V. (2014). Modeling the car-truck interaction in a system optimal dynamic traffic assignment model. J. Intelligent Transport. Systems Technol. Plan. Operations, 18(4), 327–338.
  • Oh, J.-S., Kim, H., & Jayakrishnan, R. (2012). Tourist activity simulation model for assessing real-time tour information systems. J. Intelligent Transport. Systems Technol. Plan. Operations, 16(3), 118–131.
  • Parry, K., & Hazelton, M.L. (2014). Bayesian inference for day-to-day dynamic traffic models. Transport. Res. Part B Methodol. 50, 104–115.
  • Rancourt, M.-E., Cordeau, J.-F., & Laporte, G. (2013). Long-haul vehicle routing and scheduling with working hour rules. Transport. Sci., 47(1), 81–107.
  • Siripirote, T., Sumalee, A., Watling, D.P., & Shao, H. (2014). Updating of travel behavior model parameters and estimation of vehicle trip chain based on plate scanning. J. Intelligent Transport. Systems Technol. Plan. Operations, 18(4), 393–409.
  • Sumalee, A., Zhong, R.X., Pan, T.L., & Szeto, W.Y. (2011). Stochastic cell transmission model (SCTM): A stochastic dynamic traffic model for traffic state surveillance and assignment. Transport. Res. Part B Methodol. 45(3), 507–533.
  • Szeto, W.Y. (2008). The enhanced lagged cell transmission model for dynamic traffic assignment. Transport. Res. Record, 2085, 76–85.
  • Szeto, W.Y., & Lo, H.K. (2005a). Strategies for road network design over time: Robustness under uncertainty. Transportmetrica, 1(1), 47–63.
  • Szeto, W.Y., & Lo, H.K. (2005b). The impact of advanced traveler information services on travel time and schedule delay costs. J. Intelligent Transport. Systems Technol. Plan. Operations, 9(1), 47–55.
  • Szeto, W.Y., & Lo, H.K. (2008). Time-dependent transport network improvement and tolling strategies. Transport. Res. Part A, 42(2), 376–391.
  • Szeto, W.Y., & Wong, S.C. (2012). Dynamic traffic assignment: Model classifications and recent advances in travel choice principles. Central Eur. J. Eng., 2, 1–18.
  • Szeto, W.Y., Ghosh, B., Basu, B., & O’Mahony, M. (2009). Cell-based short-term traffic flow forecasting using time series modelling. ASCE J. Transport. Eng., 135(9), 658–667.
  • Szeto, W.Y., Jaber, X.Q., & O’Mahony, M. (2010). Time-dependent discrete network design frameworks considering land use. Computer-Aided Civil Infrastruct. Eng., 25(6), 411–426.
  • Szeto, W.Y., Jiang, Y., & Sumalee, A. (2011). A cell-based model for multi-class doubly stochastic dynamic traffic assignment. Computer-Aided Civil Infrastruct. Eng., 26(8), 595–611.
  • Tian, Y., & Chiu, Y.-C. (2014). A variable time-discretization strategies-based, time-dependent shortest path algorithm for dynamic traffic assignment. J. Intelligent Transport. Systems Technol. Plan. Operations, 18(4), 339–351.
  • Wei, D., & Liu, H. (2013).  An adaptive-margin support vector regression for short-term traffic flow forecast. J. Intelligent Transport. Systems Technol. Plan. Operations, 17(4), 317–327.
  • Wismans, L., van Berkum, E., & Bliemer, M. (2013). Effects of optimizing externalities using cooperating dynamic traffic management measures on network level. J. Intelligent Transport. Systems Technol. Plan. Operations, 17(1), 65–77.
  • Wismans, L., van Berkum, E., & Bliemer, M. (2014). Accelerating solving the dynamic multi-objective network design problem using response surface methods. J. Intelligent Transport. Systems Technol. Plan. Operations, 18(1), 17–29.
  • Ye, Q., Szeto, W.Y., & Wong, S.C. (2012). Short-term traffic speed forecasting based on data recorded at irregular intervals. IEEE Trans. Intelligent Transport. Systems, 13(4), 1727–1737.
  • Yuan, Y., van Lint, H., van Wageningen-Kessels, F., & Hoogendoorn, S. (2014). Network-wide traffic state estimation using loop detector and floating car data. J. Intelligent Transport. Systems Technol. Plan. Operations, 18(1), 41–50.
  • Yushimito, W.F., Ban, X., & Holguín-Veras, J. (2014). A two-stage optimization model for staggered work hours. J. Intelligent Transport. Systems Technol. Plan. Operations, 18(4), 410–425.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.