Publication Cover
Journal of Intelligent Transportation Systems
Technology, Planning, and Operations
Volume 22, 2018 - Issue 5
658
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

A low-cost video-based pavement distress screening system for low-volume roads

ORCID Icon & ORCID Icon
Pages 376-389 | Received 14 Apr 2016, Accepted 08 Aug 2017, Published online: 15 Sep 2017

References

  • Abdel-Qader, I., Abudayyeh, O., & Kelly, M. E. (2003). Analysis of edge-detection techniques for crack identification in bridges. Journal of Computing in Civil Engineering, 17(4), 255–263.
  • Adu-Gyamfi, Y., Okine, N. A., Garateguy, G., Carrillo, R., & Arce, G. R. (2012). Multiresolution information mining for pavement crack image analysis. Journal of Computing in Civil Engineering, 26(6), 741–749.
  • Aly, M. (2008). Real time detection of lane markers in urban streets. In: 2008 IEEE Intelligent Vehicles Symposium. IEEE, pp. 7–12.
  • Bertozzi, M., & Broggi, A. (1998). GOLD: A parallel real-time stereo vision system for generic obstacle and lane detection. IEEE Transactions on Image Processing, 7(1), 62–81.
  • Bradski, G. (2000). The OpenCV Library. Doctor Dobbs Journal, 25(11), 120–126.
  • Canny, J. (1986). A computational approachto edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8 (6), 679–698.
  • Chen, L.-C., Shao, Y.-C., Jan, H.-H., Huang, C.-W., & Tien, Y.-M. (2006). Measuring system for cracks in concrete using multitemporal images. Journal of Surveying Engineering, 132(2), 77–82.
  • Chen, Q., & Wang, H. (June 13–15 2006). A real-time lane detection algorithm based on a hyperbola-pair model. In: 2006 IEEE Intelligent Vehicles Symposium. IEEE, Tokyo, Japan, pp. 510–515.
  • Chen, Z., Chen, J., Shen, F., & Lee, Y. (2013). Collaborative mobile-cloud computing for civil infrastructure condition inspection. Journal of Computing in Civil Engineering, 29(5), 04014066.
  • Cheng, H., Chen, J.-R., Glazier, C., & Hu, Y. (1999). Novel approach to pavement cracking detection based on fuzzy set theory. Journal of Computing in Civil Engineering, 13(4), 270–280.
  • Cheng, H., Wang, J., Hu, Y., Glazier, C., Shi, X., & Chen, X. (2001). Novel approach to pavement cracking detection based on neural network. Transportation Research Record: Journal of the Transportation Research Board, 1764(1), 119–127.
  • Cheng, H.-D, & Miyojim, M. (1998). Automatic pavement distress detection system. Information Sciences, 108(1), 219–240.
  • Chong, G., Phang, W., & Wrong, G. (1989). Manual for condition rating of surface-treated pavements: Distress manifestations. [Downsview]. Research and Development Branch, Ministry of Transportation of Ontar.
  • Chong, G.J., Phang, W.A., and Wrong, G.A. Manual for condition rating of surface-treated pavements - distress manifestations. SP-021. Downsview, Ontario: Ministry of Transportation of Ontario, p. 73.
  • Dennis, E., Hong, Q., Wallace, R., Tansil, W., & Smith, M. (2014). Pavement condition monitoring with crowdsourced connected vehicle data. Transportation Research Record: Journal of the Transportation Research Board, 2460, 31–38.
  • DMG. (2014). Monitoring highway assetswith remote technology. Tech. rep., Michigan Department of Transportation. “RC- 1607”.
  • Ester, M., Kriegel, H.-P., S, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference Knowledge Discovery and Data Mining (KDD96). AAAI Press, pp. 226–231.
  • Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.
  • Frangi, A. F., Niessen, W. J., Vincken, K. L., & Viergever, M. A. (1998). Multiscale vessel enhancement filtering. In: Medical Image Computing and Computer-Assisted Interventation 1998. Springer, pp. 130–137.
  • Fukuhara, T., Terada, K., Nagao, M., Kasahara, A., & Ichihashi, S. (1990). Automatic pavement-distress-survey system. Journal of Transportation Engineering, 116(3), 280–286.
  • Gallego, E., Moya, M., García, A., & Ayuga, F. (2008). Valuation of low volume roads in Spain. Part 1: Methodology development. Biosystems Engineering, 101(1), 123–134.
  • Guan, H., Li, J., Yu, Y., Chapman, M., Wang, H., Wang, C., & Zhai, R. (2015). Iterative tensor voting for pavement crack extraction using mobile laser scanning data. IEEE Transactions on Geoscience and Remote Sensing, 53(3), 1527–1537.
  • Hadi, M., & Sinha, P. (2011). Effect of pavement marking retroreflectivity on the performance of vision-based lane departure warning systems. Journal of Intelligent Transportation Systems, 15(1), 42–51.
  • Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model averaging: A tutorial. Statistical Science, 14(4), 382–401.
  • Huang, Y., & Xu, B. (2006). Automatic inspection of pavement cracking distress. Journal of Electronic Imaging, 15(1), 013017.
  • Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 0090–95.
  • Jones, E., Oliphant, T., & Peterson, P. (2001). SciPy: Open source scientific tools for Python. Retrieved from http://www.scipy.org
  • Jung, C. R., & Kelber, C. R. (2005). Lane following and lane departure using a linear-parabolic model. Image and Vision Computing, 23(13), 1192–1202.
  • Kaseko, M. S., & Ritchie, S. G. (1993). A neural network-based methodology for pavement crack detection and classification. Transportation Research Part C: Emerging Technologies, 1(4), 275–291.
  • Kim, S. J., Frahm, J.-M., & Pollefeys, M. (2008). Radiometric calibration with illumination change for outdoor scene analysis. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition. pp. 1–8.
  • Kim, Z. (2008). Robust lane detection and tracking in challenging scenarios. IEEE Transactions on Intelligent Transportation Systems, 9(1), 16–26.
  • Kiryati, N., Eldar, Y., & Bruckstein, A. M. (1991). A probabilistic hough transform. Pattern recognition, 24(4), 303– 316.
  • Kong, H., Audibert, J.-Y, & Ponce, J. (2010). General road detection from a single image. IEEE Transactions on Image Processing, 19(8), 2211–2220.
  • Koutsopoulos, H. N., Sanhouri, I. E., & Downey, A. B. (1993). Analysis of segmentation algorithms for pavement distress images. Journal of Transportation Engineering, 119(6), 868–888.
  • Li, Q., Yao, M., Yao, X., & Xu, B. (2010). A real-time 3D scanning system for pavement distortion inspection. Measurement Science and Technology, 21(1), 015702.
  • Lindeberg, T. (1998). Edge detection and ridge detection with automatic scale selection. International Journal of Computer Vision, 30(2), 117–156.
  • Lokeshwor, H., Das, L. K., & Goel, S. (2013). Robust method for automated segmentation of frames with/without distress from road surface video clips. Journal of Transportation Engineering, 140(1), 31–41.
  • Mansour, L., & Moussaoui, S. (2015). CDCP: Collaborative data collection protocol in vehicular sensor networks. Wireless Personal Communications, 80(1), 151–165.
  • Mordohai, P., & Medioni, G. (2006). Tensor voting: a perceptual organization approach to computer vision and machine learning. Synthesis Lectures on Image, Video, and Multimedia Processing, 2(1), 1–136.
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,..., Dubourg, V. (2011). Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research, 12, 2825–2830.
  • Radopoulou, S., & Brilakis, I. (2015). Automated detection of road defects for enhanced pavement condition assessment. In: The 22nd EG-ICE Workshop on Intelligent Computing in Engineering. Eindhoven, Netherlands.
  • Ryu, S.-K., Kim, T., & Kim, Y.-R. (2015). Image-based pothole detection system for ITS service and road management system. Mathematical Problems in Engineering, 501, 968361.
  • Sinha, S. K., & Fieguth, P. W. (2006). Automated detection of cracks in buried concrete pipe images. Automation in Construction, 15(1), 58–72.
  • Sun, Y., Salari, E., & Chou, E. (2009). Automated pavement distress detection using advanced image processing techniques. In: IEEE International Conference on Electro/Information Technology. pp. 373–377.
  • Suzuki, S., et al. (1985). Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing, 30(1), 32–46.
  • Tsai, Y.-C., Kaul, V., & Mersereau, R. M. (2009). Critical assessment of pavement distress segmentation methods. Journal of Transportation Engineering, 136(1), 11–19.
  • Tsai, Y.-C. J., & Li, F. (2012). Critical assessment of detecting asphalt pavement cracks under different lighting and low intensity contrast conditions using emerging 3D laser technology. Journal of Transportation Engineering, 138(5), 649–656.
  • Van Der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: A structure for efficient numerical computation. Computing in Science & Engineering, 13(2), 22–30.
  • Wang, K. C. (2000). Designs and implementations of automated systems for pavement surface distress survey. Journal of Infrastructure Systems, 6(1), 24–32.
  • Wang, Y., Teoh, E. K., & Shen, D. (2004). Lane detection and tracking using b-snake. Image and Vision Computing, 22(4), 269–280.
  • Ying, L., &  Salari, E. (2010). Beamlet transform-based technique for pavement crack detection and classification. Computer-Aided Civil and Infrastructure Engineering, 25(8), 572–580.
  • Zhou, J., Huang, P. S., & Chiang, F.-P. (2006). Wavelet-based pavement distress detection and evaluation. Optical Engineering, 45(2), 027007–027007.
  • Zou, Q., Cao, Y., Li, Q., Mao, Q., & Wang, S. (2012). Cracktree: Automatic crack detection from pavement images. Pattern Recognition Letters, 33(3), 227–238.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.