260
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Empirical random phase transitions between free flow and synchronized flow at highway bottlenecks

ORCID Icon, ORCID Icon, , , , , , & show all
Pages 539-555 | Received 11 Sep 2018, Accepted 02 May 2019, Published online: 04 Jun 2019

References

  • Banks, J. H. (1990). Flow processes at a freeway bottleneck. Transportation Research Record, 1297, 20–28.
  • Chandler, R. E., Herman, R., & Montroll, E. W. (1958). Traffic dynamics: Studies in car following. Operations Research, 6(2), 165–184. doi: 10.1287/opre.6.2.165
  • Chen, D., Laval, J. A., Ahn, S., & Zheng, Z. (2012). Microscopic traffic hysteresis in traffic oscillations: A behavioral perspective. Transportation Research Part B: Methodological, 46(10), 1440–1453. doi: 10.1016/j.trb.2012.07.002
  • Chen, D., Laval, J. A., Zheng, Z., & Ahn, S. (2012). A behavioral car-following model that captures traffic oscillations. Transportation Research Part B: Methodological, 46(6), 744–761. doi: 10.1016/j.trb.2012.01.009
  • Chowdhury, D., Santen, L., & Schadschneider, A. (2000). Statistical physics of vehicular traffic and some related systems. Physics Reports, 329(4-6), 199–329. doi: 10.1016/S0370-1573(99)00117-9
  • Edie, L. C., & Foote, R. S. (1958). Traffic flow in tunnels. In Highway Research Board Proceedings, 37.
  • Elefteriadou, L. (2014). An introduction to traffic flow theory (Vol. 84). New York: Springer.
  • Elefteriadou, L., Kondyli, A., Brilon, W., Hall, F. L., Persaud, B., & Washburn, S. (2014). Enhancing ramp metering algorithms with the use of probability of breakdown models. Journal of Transportation Engineering, 140(4), 04014003. doi: 10.1061/(ASCE)TE.1943-5436.0000653
  • Elefteriadou, L., Roess, R. P., & McShane, W. R. (1995). Probabilistic nature of breakdown at freeway merge junctions. Transportation Research Record, 1484, 80–89.
  • Gartner, N., Messer, C., & Rathi, A. (2001). Traffic flow theory: A state-of-the-art report.
  • Gazis, D. C. (2006). Traffic theory (Vol. 50). Berlin: Springer Science & Business Media.
  • Gazis, D. C., Herman, R., & Potts, R. B. (1959). Car-following theory of steady-state traffic flow. Operations Research, 7(4), 499–505. doi: 10.1287/opre.7.4.499
  • Gazis, D. C., Herman, R., & Rothery, R. W. (1961). Nonlinear follow-the-leader models of traffic flow. Operations Research, 9(4), 545–567. doi: 10.1287/opre.9.4.545
  • Hall, F. L., & Agyemang-Duah, K. (1991). Freeway capacity drop and the definition of capacity. Transportation Research Record, 1320, 91–98.
  • Helbing, D. (2001). Traffic and related self-driven many-particle systems. Reviews of Modern Physics, 73(4), 1067. doi: 10.1103/RevModPhys.73.1067
  • Herman, R., Montroll, E. W., Potts, R. B., & Rothery, R. W. (1959). Traffic dynamics: analysis of stability in car following. Operations Research, 7(1), 86–106. doi: 10.1287/opre.7.1.86
  • Jiang, R., Hu, M.-B., Zhang, H. M., Gao, Z.-Y., Jia, B., & Wu, Q.-S. (2015). On some experimental features of car-following behavior and how to model them. Transportation Research Part B: Methodological, 80, 338–354.
  • Kerner, B. S. (1998a). Experimental features of self-organization in traffic flow. Physical Review Letters, 81(17), 3797. doi: 10.1103/PhysRevLett.81.3797
  • Kerner, B. S. (1998b). A theory of congested traffic flow. Third international symposium on highway capacity, transportation research board highway capacity and quality of service committee, Danish road directorate (pp. 621–641).
  • Kerner, B. S. (1999a). Congested traffic flow: Observations and theory. Transportation Research Record: Journal of the Transportation Research Board, 1678(1), 160–167. doi: 10.3141/1678-20
  • Kerner, B. S. (1999b). Theory of congested traffic flow: Self-organization without bottlenecks. 14th International Symposium on Transportation and Traffic Theory, Transportation Research Institute (pp. 147–171).
  • Kerner, B. S. (2004). The physics of traffic. Berlin: Springer.
  • Kerner, B. S. (2005). Control of spatiotemporal congested traffic patterns at highway bottlenecks. Physica A: Statistical Mechanics and Its Applications, 355(2–4), 565–601. doi: 10.1016/j.physa.2005.04.025
  • Kerner, B. S. (2007). Control of spatiotemporal congested traffic patterns at highway bottlenecks. IEEE Transactions on Intelligent Transportation Systems, 8(2), 308–320. doi: 10.1109/TITS.2007.894192
  • Kerner, B. S. (2009). Introduction to modern traffic flow theory and control: The long road to three-phase traffic theory. Berlin, Heidelberg: Springer Science & Business Media.
  • Kerner, B. S. (2015). Microscopic theory of traffic-flow instability governing traffic breakdown at highway bottlenecks: Growing wave of increase in speed in synchronized flow. Physical Review E, 92(6), 062827.
  • Kerner, B. S. (2016). Failure of classical traffic flow theories: Stochastic highway capacity and automatic driving. Physica A: Statistical Mechanics and Its Applications, 450, 700–747. doi: 10.1016/j.physa.2016.01.034
  • Kerner, B. S. (2017). Breakdown in traffic networks: Fundamentals of transportation science. Berlin: Springer.
  • Kerner, B. S. (2018). Traffic breakdown, modeling approaches to. In R. A. Meyers (Ed.), Encyclopedia of complexity and systems science (pp. 1–89). Berlin, Heidelberg: Springer Science + Business Media LLC.
  • Kerner, B. S., Koller, M., Klenov, S. L., Rehborn, H., & Leibel, M. (2015). The physics of empirical nuclei for spontaneous traffic breakdown in free flow at highway bottlenecks. Physica A: Statistical Mechanics and Its Applications, 438, 365–397. doi: 10.1016/j.physa.2015.05.102
  • Kerner, B. S., Rehborn, H., Aleksic, M., & Haug, A. (2004). Recognition and tracking of spatial–temporal congested traffic patterns on freeways. Transportation Research Part C: Emerging Technologies, 12(5), 369–400. doi: 10.1016/j.trc.2004.07.015
  • Kerner, B. S., Rehborn, H., Schäfer, R.-P., Klenov, S. L., Palmer, J., Lorkowski, S., & Witte, N. (2013). Traffic dynamics in empirical probe vehicle data studied with three-phase theory: Spatiotemporal reconstruction of traffic phases and generation of jam warning messages. Physica A: Statistical Mechanics and Its Applications, 392(1), 221–251. doi: 10.1016/j.physa.2012.07.070
  • Koshi, M., Iwasaki, M., & Ohkura, I. (1983). Some findings and an overview on vehicular flow characteristics. Proceedings of the 8th international symposium on transportation and traffic flow theory (Vol. 198, pp. 403–426).
  • Kozlov, V. V., Buslaev, A. P., Bugaev, A. S., Yashina, M. V., Schadschneider, A., & Schreckenberg, M. (Eds.). (2013). Traffic and granular flow’11. Berlin, Heidelberg: Springer.
  • Laval, J. A., Toth, C. S., & Zhou, Y. (2014). A parsimonious model for the formation of oscillations in car-following models. Transportation Research Part B: Methodological, 70, 228–238. doi: 10.1016/j.trb.2014.09.004
  • Mahmassani, H. S. (Ed.). (2005). Transportation and traffic theory: Flow, dynamics and human interaction; proceedings of the 16th international symposium on transportation and traffic theory. University of Maryland, College Park, Maryland, 19–21 July 2005. Amsterdam: Elsevier.
  • May, A. D. (1990). Traffic flow fundamentals. Englewood Cliffs, NJ: Prentice Hall.
  • Molzahn, S.-E., Kerner, B. S., Rehborn, H., Klenov, S. L., & Koller, M. (2017). Analysis of speed disturbances in empirical single vehicle probe data before traffic breakdown. IET Intelligent Transport Systems, 11(9), 604–612. doi: 10.1049/iet-its.2016.0315
  • Nagatani, T. (2002). The physics of traffic jams. Reports on Progress in Physics, 65(9), 1331. doi: 10.1088/0034-4885/65/9/203
  • NGSIM - Next Generation Simulation. (2006). U.S. Department of Transportation, Federal Highway Administration. Retrieved from https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
  • Tian, J., Jiang, R., Jia, B., Gao, Z., & Ma, S. (2016). Empirical analysis and simulation of the concave growth pattern of traffic oscillations. Transportation Research Part B: Methodological, 93, 338–354. doi: 10.1016/j.trb.2016.08.001
  • Treiber, M., & Kesting, A. (2013). Traffic flow dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978-3-642-32460-4
  • Treiterer, J. (1975). Investigation of traffic dynamics by aerial photogrammetry techniques (final report Nos. EES-278 Final Rpt., OHIO-DOT-09-75, FCP 40T2-052, PB 246 094). Columbus, OH United States: Ohio State University.
  • Yang, B., & Monterola, C. (2016). Efficient intersection control for minimally guided vehicles: A self-organised and decentralised approach. Transportation Research Part C: Emerging Technologies, 72, 283–305. doi: 10.1016/j.trc.2016.10.004
  • Zheng, Z., Ahn, S., Chen, D., & Laval, J. (2011). Freeway traffic oscillations: microscopic analysis of formations and propagations using wavelet transform. Procedia-Social and Behavioral Sciences, 17, 702–716. doi: 10.1016/j.sbspro.2011.04.540

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.