Publication Cover
Journal of Intelligent Transportation Systems
Technology, Planning, and Operations
Volume 25, 2021 - Issue 5
1,002
Views
22
CrossRef citations to date
0
Altmetric
Innovations for Smart and Connected Traffic. Guest Editor. Professor Zhibin Li, Southeast University, China

Driver’s black box: a system for driver risk assessment using machine learning and fuzzy logic

ORCID Icon &
Pages 482-500 | Received 25 Sep 2019, Accepted 13 Nov 2020, Published online: 02 Dec 2020

References

  • Ahmed, M. U., & Begum, S. (2020). Convolutional Neural network for driving maneuver identification based on inertial measurement unit (IMU) and global positioning system (GPS). Frontiers in Sustainable Cities, 2, 34. https://doi.org/10.3389/frsc.2020.00034
  • Aksjonov, A., Nedoma, P., Vodovozov, V., Petlenkov, E., & Herrmann, M. (2019). Detection and evaluation of driver distraction using machine learning and fuzzy logic. IEEE Transactions on Intelligent Transportation Systems, 20(6), 2048–2059. https://doi.org/10.1109/TITS.2018.2857222
  • Allouch, A., Koubâa, A., Abbes, T., & Ammar, A. (2017). Roadsense: Smartphone application to estimate road conditions using accelerometer and gyroscope. IEEE Sensors Journal, 17(13), 4231–4238. https://doi.org/10.1109/JSEN.2017.2702739
  • Anaissi, A., Khoa, N. L. D., Rakotoarivelo, T., Alamdari, M. M., & Wang, Y. (2019). Smart pothole detection system using vehicle-mounted sensors and machine learning. Journal of Civil Structural Health Monitoring, 9(1), 91–102. https://doi.org/10.1007/s13349-019-00323-0
  • Bejani, M. M., & Ghatee, M. (2018). A context aware system for driving style evaluation by an ensemble learning on smartphone sensors data. Transportation Research Part C: Emerging Technologies, 89, 303–320. https://doi.org/10.1016/j.trc.2018.02.009
  • Bejani, M. M., & Ghatee, M. (2020). Convolutional neural network with adaptive regularization to classify driving styles on smartphones. IEEE Transactions on Intelligent Transportation Systems, 21(2), 543–552. https://doi.org/10.1109/TITS.2019.2896672
  • Biljecki, F., Ledoux, H., & Van Oosterom, P. (2013). Transportation mode-based segmentation and classification of movement trajectories. International Journal of Geographical Information Science, 27(2), 385–407. https://doi.org/10.1080/13658816.2012.692791
  • Bolón-Canedo, V., Sánchez-Maroño, N., & Alonso-Betanzos, A. (2013). A review of feature selection methods on synthetic data. Knowledge and Information Systems, 34(3), 483–519. https://doi.org/10.1007/s10115-012-0487-8
  • Bolovinou, A., Amditis, A., Bellotti, F., & Tarkiainen, M. (2014). Driving style recognition for co-operative driving: A survey [Paper Presentation]. The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications (pp. 73–78).
  • Bose, B., Dutta, J., Ghosh, S., Pramanick, P., & Roy, S. (2018). D&RSense: Detection of driving patterns and road anomalies [Paper presentation]. 2018 3rd International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU) (pp. 1–7). Bhimtal. https://doi.org/10.1109/IoT-SIU.2018.8519861
  • Cai, H., Hu, Z., Chen, Z., & Zhu, D. (2018). A driving fingerprint map method of driving characteristic representation for driver identification. IEEE Access, 6, 71012–71019. https://doi.org/10.1109/ACCESS.2018.2881722
  • Carlos, M. R., Aragon, M. E., González, L. C., Escalante, H. J., & Martinez, F. (2018). Evaluation of detection approaches for road anomalies based on accelerometer readings–Addressingwho’s who. IEEE Transactions on Intelligent Transportation Systems, 19(10), 3334–3343. https://doi.org/10.1109/TITS.2017.2773084
  • Carlos, M. R., Gonzalez, L. C., Wahlstrom, J., Ramirez, G., Martinez, F., & Runger, G. (2020). How smartphone accelerometers reveal aggressive driving behavior?-The key is the representation. IEEE Transactions on Intelligent Transportation Systems, 21(8), 3377–3387. https://doi.org/10.1109/TITS.2019.2926639
  • Carvalho, E., Ferreira, B. V., Ferreira, J., De Souza, C., Carvalho, H. V., Suhara, Y., … Pessin, G. (2017). Exploiting the use of recurrent neural networks for driver behavior profiling [Paper presentation]. 2017 International Joint Conference on Neural Networks (IJCNN) (pp. 3016–3021). Anchorage, AK. https://doi.org/10.1109/IJCNN.2017.7966230
  • Christopoulos, S. R. G., Kanarachos, S., & Chroneos, A. (2019). Learning driver braking behavior using smartphones, neural networks and the sliding correlation coefficient: Road anomaly case study. IEEE Transactions on Intelligent Transportation Systems, 20(1), 65–74. https://doi.org/10.1109/TITS.2018.2797943
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1023/A:1022627411411
  • Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27. https://doi.org/10.1109/TIT.1967.1053964
  • Das, R. D., & Winter, S. (2018). A fuzzy logic based transport mode detection framework in urban environment. Journal of Intelligent Transportation Systems, 22(6), 478–489. https://doi.org/10.1080/15472450.2018.1436968
  • Eftekhari, H. R., & Ghatee, M. (2019). A similarity-based neuro-fuzzy modeling for driving behavior recognition applying fusion of smartphone sensors. Journal of Intelligent Transportation Systems, 23(1), 72–83. https://doi.org/10.1080/15472450.2018.1506338
  • Eren, H., Makinist, S., Akin, E., & Yilmaz, A. (2012). Estimating driving behavior by a smartphone [Paper presentation]. 2012 IEEE Intelligent Vehicles Symposium (pp. 234–239). Alcala de Henares. https://doi.org/10.1109/IVS.2012.6232298
  • Goel, B., Dey, A. K., Bharti, P., Ahmed, K. B., & Chellappan, S. (2018). Detecting distracted driving using a wrist-worn wearable [Paper presentation]. 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops) (pp. 233–238). Athens. https://doi.org/10.1109/PERCOMW.2018.8480282
  • Hajian, A., & Styles, P. (2018). Artificial neural networks. In Application of soft computing and intelligent methods in geophysics (pp. 3–69). Springer.
  • Hall, M. A. (1999). Feature selection for discrete and numeric class machine learning. University of Waikato, Department of Computer Science. https://researchcommons.waikato.ac.nz/handle/10289/1033
  • Hallac, D., Sharang, A., Stahlmann, R., Lamprecht, A., Huber, M., Roehder, M., & Leskovec, J. (2016). Driver identification using automobile sensor data from a single turn [Paper presentation]. 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC) (pp. 953–958). Rio de Janeiro. https://doi.org/10.1109/ITSC.2016.7795670
  • Hong, Y., Pasman, H. J., Quddus, N., & Mannan, M. S. (2020). Supporting risk management decision making by converting linguistic graded qualitative risk matrices through interval type-2 fuzzy sets. Process Safety and Environmental Protection, 134, 308–322. https://doi.org/10.1016/j.psep.2019.12.001
  • ITF. (2018, May 18). Road safety annual report 2018. OECD. Retrieved October 31, 2020, from https://www.itf-oecd.org/sites/default/files/docs/irtad-road-safety-annual-report-2018_2.pdf
  • Ivezić, D., Tanasijević, M., & Ignjatović, D. (2008). Fuzzy approach to dependability performance evaluation. Quality and Reliability Engineering International, 24(7), 779–792. https://doi.org/10.1002/qre.926
  • Johnson, D. A., & Trivedi, M. M. (2011). Driving style recognition using a smartphone as a sensor platform [Paper presentation]. 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC) (pp. 1609–1615). Washington, DC. https://doi.org/10.1109/ITSC.2011.6083078
  • Kalliris, M., Kanarachos, S., Kotsakis, R., Haas, O., & Blundell, M. (2019). Machine learning algorithms for wet road surface detection using acoustic measurements [Paper presentation]. 2019 IEEE International Conference on Mechatronics (ICM) (Vol. 1, pp. 265–270). Ilmenau, Germany. https://doi.org/10.1109/ICMECH.2019.8722834
  • Kanarachos, S., Christopoulos, S. R. G., & Chroneos, A. (2018). Smartphones as an integrated platform for monitoring driver behaviour: The role of sensor fusion and connectivity. Transportation Research Part C: emerging Technologies, 95, 867–882. https://doi.org/10.1016/j.trc.2018.03.023
  • Khaleghi, S., Givehchi, S., & Karimi, S. (2013). Fuzzy risk assessment and categorization, based on event tree analysis (ETA) and layer of protection analysis (LOPA): case study in gas transport system. World Applied Programming, 3(9), 417–426.
  • Liu, P., Kurt, A., Redmill, K., & Ozguner, U. (2015). Classification of highway lane change behavior to detect dangerous cut-in maneuvers [Paper Presentation]. The Transportation Research Board (TRB) 95th Annual Meeting (Vol. 2).
  • Ma, Y., Zhang, Z., Chen, S., Yu, Y., & Tang, K. (2019). A comparative study of aggressive driving behavior recognition algorithms based on vehicle motion data. IEEE Access, 7, 8028–8038. https://doi.org/10.1109/ACCESS.2018.2889751
  • Machado, I. P., Gomes, A. L., Gamboa, H., Paixão, V., & Costa, R. M. (2015). Human activity data discovery from triaxial accelerometer sensor: Non-supervised learning sensitivity to feature extraction parametrization. Information Processing & Management, 51(2), 204–214. https://doi.org/10.1016/j.ipm.2014.07.008
  • Mamdani, E. H. (1976). Advances in the linguistic synthesis of fuzzy controllers. International Journal of Man-Machine Studies, 8(6), 669–678. https://doi.org/10.1016/S0020-7373(76)80028-4
  • Mantouka, E. G., Barmpounakis, E. N., & Vlahogianni, E. I. (2019). Identification of driving safety profiles from smartphone data using machine learning techniques. Safety Science, 119(0), 84–90. https://doi.org/10.1016/j.ssci.2019.01.025
  • Matousek, M., El-Zohairy, M., Al-Momani, A., Kargl, F., & Bosch, C. (2019, June). Detecting anomalous driving behavior using neural networks [Paper presentation]. IEEE Intelligent Vehicles Symposium, Proceedings (pp. 2229–2235). Paris, France. https://doi.org/10.1109/IVS.2019.8814246
  • Mednis, A., Strazdins, G., Zviedris, R., Kanonirs, G., & Selavo, L. (2011). Real time pothole detection using android smartphones with accelerometers [Paper presentation]. 2011 International Conference on Distributed Computing in Sensor Systems and Workshops (DCOSS), (pp. 1–6). Barcelona https://doi.org/10.1109/DCOSS.2011.5982206
  • Meiring, G. A. M., & Myburgh, H. C. (2015). A review of intelligent driving style analysis systems and related artificial intelligence algorithms. Sensors (Basel, Switzerland)), 15(12), 30653–30682. https://doi.org/10.3390/s151229822
  • Moukafih, Y., Hafidi, H., & Ghogho, M. (2019). Aggressive driving detection using deep learning-based time series classification [Paper presentation]. IEEE International Symposium on INnovations in Intelligent Systems and Applications, INISTA 2019 - Proceedings, Sofia, Bulgaria. https://doi.org/10.1109/INISTA.2019.8778416
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., & Vanderplas, J. (2011, October). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
  • Pitombo, C. S., de Souza, A. D., & Lindner, A. (2017). Comparing decision tree algorithms to estimate intercity trip distribution. Transportation Research Part C: Emerging Technologies, 77, 16–32. https://doi.org/10.1016/j.trc.2017.01.009
  • Ramyar, S., Homaifar, A., Karimoddini, A., & Tunstel, E. (2016). Identification of anomalies in lane change behavior using one-class svm [Paper presentation]. 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 004405–004410). Budapest. https://doi.org/10.1109/SMC.2016.7844924
  • Rizzo, N., Sprissler, E., Hong, Y., & Goel, S. (2015). Privacy preserving driving style recognition [Paper presentation]. 2015 International Conference on Connected Vehicles and Expo (ICCVE) (pp. 232–237). Shenzhen. https://doi.org/10.1109/ICCVE.2015.42
  • Saiprasert, C., Pholprasit, T., & Thajchayapong, S. (2017). Detection of driving events using sensory data on smartphone. International Journal of Intelligent Transportation Systems Research, 15(1), 17–28. https://doi.org/10.1007/s13177-015-0116-5
  • Saleh, K., Hossny, M., & Nahavandi, S. (2017). Driving behavior classification based on sensor data fusion using LSTM recurrent neural networks [Paper presentation]. 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC) (pp. 1–6). Yokohama. https://doi.org/10.1109/ITSC.2017.8317835
  • Shahverdy, M., Fathy, M., Berangi, R., & Sabokrou, M. (2020). Driver behavior detection and classification using deep convolutional neural networks. Expert Systems with Applications, 149, 113240. https://doi.org/10.1016/j.eswa.2020.113240
  • Silva, I., & Eugenio Naranjo, J. (2020). A systematic methodology to evaluate prediction models for driving style classification. Sensors, 20(6), 1692. https://doi.org/10.3390/s20061692
  • Singh, G., Bansal, D., & Sofat, S. (2017). A smartphone based technique to monitor driving behavior using DTW and crowdsensing. Pervasive and Mobile Computing, 40, 56–70. https://doi.org/10.1016/j.pmcj.2017.06.003
  • Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15(1), 116–132. https://doi.org/10.1109/TSMC.1985.6313399
  • Tejera Hernández, D. C. (2015). An experimental study of k* algorithm. International Journal of Information Engineering and Electronic Business, 7(2), 14–19. https://doi.org/10.5815/ijieeb.2015.02.03
  • Thanh Noi, P., & Kappas, M. (2017). Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors, 18(2), 18. https://doi.org/10.3390/s18010018
  • Torres, R., Ohashi, O., & Pessin, G. (2019). A machine-learning approach to distinguish passengers and drivers reading while driving. Sensors, 19(14), 3174. https://doi.org/10.3390/s19143174
  • Van Ly, M., Martin, S., & Trivedi, M. M. (2013). Driver classification and driving style recognition using inertial sensors [Paper presentation]. 2013 IEEE Intelligent Vehicles Symposium (IV) (pp. 1040–1045). Gold Coast, QLD. https://doi.org/10.1109/IVS.2013.6629603
  • Vlahogianni, E. I., & Barmpounakis, E. N. (2017). Driving analytics using smartphones: Algorithms, comparisons and challenges. Transportation Research Part C: Emerging Technologies, 79, 196–206. https://doi.org/10.1016/j.trc.2017.03.014
  • Wahlström, J., Skog, I., & Händel, P. (2017). Smartphone-based vehicle telematics: A ten-year anniversary. IEEE Transactions on Intelligent Transportation Systems, 18(10), 2802–2825. https://doi.org/10.1109/TITS.2017.2680468
  • Witten, I. H., & Frank, E. (2002). Data mining: practical machine learning tools and techniques with Java implementations. ACM SIGMOD Record, 31(1), 76–77. https://doi.org/10.1145/507338.507355
  • World Health Organization. (2018, June 17). Global status report on road safety 2018: Summary (No. WHO/NMH/NVI/18.20). World Health Organization. Retrieved October 31, 2020, from https://www.who.int/publications/i/item/9789241565684
  • Wu, X., Zhou, J., An, J., & Yang, Y. (2018). Abnormal driving behavior detection for bus based on the Bayesian classifier [Paper presentation]. 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI), Xiamen (pp. 266–272). IEEE. https://doi.org/10.1109/ICACI.2018.8377618
  • Xie, J., Hilal, A. R., & Kulić, D. (2018). Driving maneuver classification: A comparison of feature extraction methods. IEEE Sensors Journal, 18(12), 4777–4784. https://doi.org/10.1109/JSEN.2017.2780089
  • Yao, Y., Zhao, X., Du, H., Zhang, Y., Zhang, G., & Rong, J. (2019). Classification of fatigued and drunk driving based on decision tree methods: A simulator study. International Journal of Environmental Research and Public Health, 16(11), 1935. https://doi.org/10.3390/ijerph16111935
  • Yi, D., Su, J., Liu, C., Quddus, M., & Chen, W. H. (2019). A machine learning based personalized system for driving state recognition. Transportation Research Part C: Emerging Technologies, 105, 241–261. https://doi.org/10.1016/j.trc.2019.05.042
  • Yuksel, A. S., Senel, F. A., & Cankaya, I. A. (2019). Classification of soft keyboard typing behaviors using mobile device sensors with machine learning. Arabian Journal for Science and Engineering, 44(4), 3929–3942. https://doi.org/10.1007/s13369-018-03703-8
  • Zhang, Y., Li, J., Guo, Y., Xu, C., Bao, J., & Song, Y. (2019). Vehicle driving behavior recognition based on multi-view convolutional neural network with joint data augmentation. IEEE Transactions on Vehicular Technology, 68(5), 4223–4234. https://doi.org/10.1109/TVT.2019.2903110
  • Zhang, J., Wu, Z., Li, F., Xie, C., Ren, T., Chen, J., & Liu, L. (2019). A deep learning framework for driving behavior identification on in-vehicle CAN-BUS sensor data. Sensors, 19(6), 1356. https://doi.org/10.3390/s19061356
  • Zhao, H., Zhou, H., Chen, C., & Chen, J. (2013). Join driving: A smart phone-based driving behavior evaluation system [Paper presentation]. 2013 IEEE Global Communications Conference (GLOBECOM) (pp. 48–53). Atlanta, GA. https://doi.org/10.1109/GLOCOM.2013.6831046
  • Zylius, G. (2017). Investigation of route-independent aggressive and safe driving features obtained from accelerometer signals. IEEE Intelligent Transportation Systems Magazine, 9(2), 103–113. https://doi.org/10.1109/MITS.2017.2666583

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.