Publication Cover
Journal of Intelligent Transportation Systems
Technology, Planning, and Operations
Volume 26, 2022 - Issue 6
4,224
Views
8
CrossRef citations to date
0
Altmetric
Articles

Performance evaluation of a state-of-the-art automotive radar and corresponding modeling approaches based on a large labeled dataset

ORCID Icon, &
Pages 655-674 | Received 18 Sep 2020, Accepted 20 Jul 2021, Published online: 12 Aug 2021

References

  • Anderson, J. M., Kalra, N., Stanley, K. D., Sorensen, P., Constantine, S., Oluwatobi, A. (2016). ‘Autonomous Vehicle Technology: A Guide for Policymakers’ RAND Corporation, RR-443-2-RC, Santa Monica, Calif., Retrieved January 23, 2020, from http://www.rand.org/pubs/research_reports/RR443-2.html
  • Arage, A., Steffens, W. M., Kuehnle, G., & Jakoby, R. (2006). ‘Effects of Water and Ice Layer on Automotive Radar’ in Proc. German Microw. Conf,
  • Bernsteiner, S., Magosi, Z., Lindvai-Soos, D., Eichberger, A., Lindvai-Soos, D., & Eichberger, A. (2015). Radarsensormodell fuer den virtuellen Entwicklungsprozess. ATZelektronik, 10(2), 72–79. https://doi.org/10.1007/s35658-015-0508-y
  • Breiman, L. (2001). Random Forests. Machine Learning 45, 5–32. https://doi.org/10.1023/A:1010933404324
  • Buehren, M., & Bin, Y. (2006a). Automotive radar target list simulation based on reflection center representation of objects. In Proc. Intern. Workshop on Intelligent Transportation (WIT), Germany. pp. 161–166.
  • Buehren, M., & Bin, Y. (2006b). Simulation of automotive radar target lists using a novel approach of object representation. (pp. 314–319). IEEE Intelligent Vehicles Symposium (IV).
  • Buehren, M., & Bin, Y. (2007a). A Global Motion Model for Target Tracking in Automotive Applications. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2, II-313–II-316. https://doi.org/10.1109/ICASSP.2007.366235
  • Buehren, M., & Bin, Y. (2007b). Extension of Automotive Radar Target List Simulation to consider further Physical Aspects. In Proceedings of 7th International Conference on Intelligent Transport Systems (ITS) Telecommunications, 1–6, June 2007. https://doi.org/10.1109/ITST.2007.4295847
  • Buehren, M., & Bin, Y. (2007c). Initialization procedure for radar target tracking without object movement constraints. In Proceedings of 7th International Conference on Intelligent Transport Systems (ITS) Telecommunications, 112–117, June 2007. https://doi.org/10.1109/ITST.2007.4295845
  • Buehren, M., & Bin, Y. (2007d). Simulation of Automotive Radar Target Lists considering Clutter and Limited Resolution. In Proceedings of International Radar Symposium, pp. 195–200, September 2007.
  • Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., Krishnan, A., Pan, Y., Baldan, G., & Beijbom, O. (2019). nuScenes: A multimodal dataset for autonomous driving. CoRR, volume abs/1903.11027, arXiv:1903.11027v1 [cs.LG].
  • Cao, P., Wachenfeld, W., & Winner, H. (2015). Perception sensor modeling for virtual validation of automated driving. IT - Information Technology, 57(4), 243–251. https://doi.org/10.1515/itit-2015-0006
  • Cao, P. (2017). Modeling active perception sensors for real-time virtual validation of automated driving systems [PhD thesis]. Technische Universität Darmstadt
  • Continental. (2016). Technical Documentation ARS 404-21 (Entry) and ARS 408-21 (Premium). Continental Engineering Services GmbH Version 1.0, 14 October
  • Continental. (2017). ARS 408-21 Premium Long Range Radar Sensor 77 GHz. Continental Engineering Services GmbH, ARS 408-21 datasheet.
  • Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., & Schiele, B. (2016). The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/BF00994018
  • Danielsson, L. (2010). Tracking and radar sensor modelling for automotive safety systems [PhD thesis]. Chalmers University of Technology.
  • Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V. (2017). CARLA: An Open Urban Driving Simulator. In Proceedings of the 1st Annual Conference on Robot Learning, 1–16.
  • Echard, J. D. (1991). ‘Estimation of radar detection and false alarm probability’. IEEE Transactions on Aerospace and Electronic Systems, 27(2), 255–260. https://doi.org/10.1109/7.78300
  • Eltayeb, M. E., Al-Naffouri, T. Y., & Robert, W. (2018). Heath compressive sensing for millimeter wave antenna array diagnosis. IEEE Transactions on Communications, 66(6), 2708–2721. in http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8248776&isnumber=8385566 https://doi.org/10.1109/TCOMM.2018.2790403
  • Fagnant, D. J., & Kockelman, K. (2015). Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transportation Research Part A: Policy and Practice, 77, 167–181. https://doi.org/10.1016/j.tra.2015.04.003. http://www.sciencedirect.com/science/article/pii/S0965856415000804
  • Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451
  • Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors)’. The Annals of Statistics, 28(2), 337–407. https://doi.org/10.1214/aos/1016218223
  • Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autonomous driving? The KITTI vision benchmark suite. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit, 3354–3361.
  • Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The KITTI Dataset. The International Journal of Robotics Research, 32(11), 1231–1237. https://doi.org/10.1177/0278364913491297
  • Hakuli, S., & Krug, M. (2015). ‘Virtuelle Integration’ Kapitel 8 in Handbuch Fahrerassistenzsysteme - 2015. In H. Winner (Ed.), Grundlagen, Komponenten und Systeme fuer aktive Sicherheit und Komfort. Springer Verlag.
  • Hammarstrand, L., Lundgren, M., & Svensson, L. (2012a). Adaptive radar sensor model for tracking structured extended objects. IEEE Transactions on Aerospace and Electronic Systems, 48, 1975–1995. https://doi.org/10.1109/TAES.2012.6237574,July 2012.
  • Hammarstrand, L., Svensson, L., Sandblom, F., & Sorstedt, J. (2012b). Extended object tracking using a radar resolution model. IEEE Transactions on Aerospace and Electronic Systems, 48, 2371–2386. https://doi.org/10.1109/TAES.2012.6237597
  • Hanke, T., Hirsenkorn, N., Dehlink, B., Rauch, A., Rasshofer, R., & Biebl, E. (2015). Generic Architecture for Simulation of ADAS Sensors. 2015 In Proceedings International Radar Symposium, Dresden.
  • Hanke, T., Hirsenkorn, N., van-Driesten, C., Garcia-Ramos, P., Schiementz, M., Schneider, S., & Biebl, E. (2017). Open Simulation Interface - A generic interface for the environment perception of automated driving functions in virtual scenarios. Research Report. https://www.hot.ei.tum.deforschungautomotive-veroeffentlichungen.
  • Hasch, J. (2015). Driving Towards 2020: Automotive Radar Technology Trends. In IEEE MTT-S International Conference on Microwaves for Intelligent Mobility, 978-1-4799-7215-9/15, 1–4.
  • Hasirlioglu, S., & Riener, A. (2017). Introduction to rain and fog attenuation on automotive surround sensors. In 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, 1–7. https://doi.org/10.1109/ITSC.2017.8317823,2017.
  • Hasirlioglu, S., Kamann, A., Doric, I., & Thomas, B. (2016). Test Methodology for Rain Influence on Automotive Surround Sensors. In 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC) Windsor Oceanico Hotel, Rio de Janeiro, Brazil, November 1-4.
  • Hassen, A. A. (2007). Indicators for the signal degradation and optimization of automotive radar sensors under adverse weather conditions [Dissertation]. TU Darmstadt. http://elib.tu-darmstadt.de/diss/000765,
  • Hirsenkorn, N., Hanke, T., Rauch, A., Dehlink, B., Rasshofer, R., & Biebl, E. (2015). A non-parametric approach for modeling sensor behavior. 16th International Radar Symposium, pp. 131–136.
  • Hirsenkorn, N., Subkowski, P., Hanke, T., Schaermann, A., Rauch, A., Rasshofer, R., & Biebl, E. (2017). A ray launching approach for modeling an FMCW radar system [Paper presentation]. The 18th International Radar Symposium IRS 2017, Prague, Czech Republic, June 28-30, pp. 1–10. https://doi.org/10.23919/IRS.2017.8008120
  • Huang, X., Cheng, X., Geng, Q., Cao, B., Zhou, D., Wang, P., Lin, Y., Yang, R. (2018). The ApolloScape Dataset for Autonomous Driving. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 954–960.
  • Huang, X., Wang, P., Cheng, X., Zhou, D., Geng, Q., & Yang, R. (2019). The ApolloScape open dataset for autonomous driving and its application. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(10), 2702–2719. arXiv:1803.06184v4. https://doi.org/10.1109/TPAMI.2019.2926463
  • IPG. (2019). Automotive GmbH ‘CarMaker: Virtual testing of automobiles and light-duty vehicles’. Retrieved October 2, 2019, from https://ipg-automotive.com/products-services/simulation-software/carmaker/.
  • Kalra, N., & Paddock, S. M. (2016). Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability? Transportation Research Part A: Policy and Practice, 94, 182–193. https://doi.org/10.1016/j.tra.2016.09.010. http://www.sciencedirect.com/science/article/pii/S0965856416302129
  • Kang, Y., Yin, H., & Berger, C. (2019). Test your self-driving algorithm: an overview of publicly available driving datasets and virtual testing environments. IEEE Transactions on Intelligent Vehicles, 4(2), 171–185. https://doi.org/10.1109/TIV.2018.2886678
  • Liebske, R. (2019). ‘Short Description ARS 404-21 (Entry) + ARS 408-21 (Premium) Long Range Radar Sensor 77 GHz - Technical Data’ Continental, Version 1.11en, document no. 2017_07_09-10,
  • Maier, F. M., Makkapati, V. P., & Horn, M. (2018a). Adapting phong into a simulation for stimulation of automotive radar sensors. IEEE International Conference on Microwaves for Intelligent Mobility. https://doi.org/10.1109/ICMIM.2018.8443493
  • Maier, F. M., Makkapati, V. P., & Martin, H. (2018b). Environment perception simulation for radar stimulation in automated driving function testing. Elektrotechnik & Informationstechnik, 135, 1–7. 135/4-5: 309–315. https://doi.org/10.1007/s00502-018-0624-5,
  • Marti, E., Perez, J., de Miguel, M. A., & Garcia, F. (2019). A review of sensor technologies for perception in automated driving. IEEE Intelligent Transportation Systems Magazine, pp. 94–108, Winter 2019. https://doi.org/10.1109/MITS.2019.2907630
  • Mesow, L. (2006). Multisensorielle Datensimulation im Fahrzeugumfeld für die Bewertung von Sensorfusionsalgorithmen [PhD thesis], Technische Universität Chemnitz.
  • Meyer, M., & Kuschk, G. (2019). Automotive Radar Dataset for Deep Learning Based 3D Object Detection. In Proceedings of the 16th European Radar Conference, Paris, France, 2–4 October 2019, pp. 129–132.
  • Muckenhuber, S., Holzer, H., Rübsam, J., & Stettinger, G. (2019). Object-Based Sensor Model for Virtual Testing of ADAS/AD Functions. IEEE ICCVE (International Conference on Connected Vehicles and Expo), Graz, 4-8 November 2019.
  • Patole, S. M., Torlak, M., Wang, D., & Ali, M. (2017). Automotive radars: A review of signal processing techniques. IEEE Signal Processing Magazine, 34(2), 22–35. https://doi.org/10.1109/MSP.2016.2628914, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7870764&isnumber=7870726
  • Ramasubramanian, K., & Ramaiah, K. (2018). Moving from Legacy 24 GHz to State-of-the-Art 77-GHz Radar. ATZelektronik Worldwide, 13, 46–49. https://doi.org/10.1007/s38314-018-0029-6
  • SAE. (2018). SAE International ‘Ground Vehicle Standard J3016_201806’, Retrieved January 20, 2020, from https:saemobilus.sae.orgcontentj3016_201806
  • Schlager, B., Muckenhuber, S., Schmidt, S., Holzer, H., Rott, R., Maier, F. M., Saad, K., Kirchengast, M., Stettinger, G., Watzenig, D., & Ruebsam, J. (2020). State-of- the-art sensor models for virtual testing of advanced driver assistance systems/autonomous driving functions. SAE International Journal of Connected and Automated Vehicles, 3(3), 233–261. https://doi.org/10.4271/12-03-03-0018
  • Schuler, K. (2007). Intelligente Antennensysteme für Kraftfahrzeug-Nahbereichs-Radar-Sensorik. PhD thesis Universität Karlsruhe (TH).
  • Schuler, K., Becker, D., & Wiesbeck, W. (2008). Extraction of virtual scattering centers of vehicles by ray-tracing simulations. IEEE Transactions on Antennas and Propagation, 56, 11.
  • Shah, S., Dey, D., Lovett, C., Kapoor, A. (2017). AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles’ Field and Service Robotics. arXiv:1705.05065, https://arxiv.org/abs/1705.05065,
  • Stolz, M., & Nestlinger, G. (2018). Fast Generic Sensor Models for Testing Highly Automated Vehicles in Simulation. Elektrotechnik Und Informationstechnik, 135(4-5), 365–369. https://doi.org/10.1007/s00502-018-0629-0
  • Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J., Zhou, Y., Chai, Y., Caine, B., Vasudevan, V., Han, W., Ngiam, J., Zhao, H., Timofeev, A., Ettinger, S., Krivokon, M., Gao, A., Joshi, A. … Anguelov, D. (2019). Scalability in Perception for Autonomous Driving: Waymo Open Dataset. arXiv:1912.04838v5 [cs.CV] 18.
  • VIRES. (2019). VIRES Simulationstechnologie GmbH. VTD - VIRES Virtual Test Drive. Retrieved October 2, 2019. https://vires.com/vtd-vires-virtual-test-drive/
  • Watzenig, D., & Horn, M. (Eds.). (2016). Automated driving: safer and more efficient future driving. Springer. https://doi.org/10.1007/978-3-319-31895-0
  • Wheeler, T. A., Holder, M., Winner, H., Kochenderfer, M. J. (2017). Deep Stochastic Radar Models, In IEEE Intelligent Vehicles Symposium.
  • World Health Organisation (WHO). (2018). Global status report on road safety 2018. ISBN 978-92-4-156568-4, Retrieved January 20, 2020, from https://apps.who.int/iris/bitstream/handle/10665/276462/9789241565684-eng.pdf.
  • Xu, H., Gao, Y., Yu, F., & Darrell, T. (2017). End-to-end learning of driving models from large-scale video datasets. In Proceedings of IEEE Conference on Computer Vision Pattern Recognition, 3530–3538.
  • Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., & Darrell, T. (2018). BDD100K: A diverse driving video database with scalable annotation tooling. arXiv:1805.04687.