Publication Cover
Journal of Intelligent Transportation Systems
Technology, Planning, and Operations
Volume 27, 2023 - Issue 1
553
Views
3
CrossRef citations to date
0
Altmetric
Articles

Extending the adaptive time gap car-following model to enhance local and string stability for adaptive cruise control systems

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 36-56 | Received 15 Dec 2020, Accepted 19 Sep 2021, Published online: 03 Oct 2021

References

  • Adamy, J. (2018). Nichtlineare Systeme und Regelungen (3rd ed.). Springer Vieweg, Berlin, Heidelberg.
  • Bando, M., Hasebe, K., Nakayama, A., Shibata, A., & Sugiyama, Y. (1995). Dynamical model of traffic congestion and numerical simulation. Physical Review E, 51 (2), 1035–1042. https://doi.org/10.1103/PhysRevE.51.1035
  • Bekiaris-Liberis, N., Roncoli, C., & Papageorgiou, M. (2018). Predictor-based adaptive cruise control design. IEEE Transactions on Intelligent Transportation Systems, 19 (10), 3181–3195. https://doi.org/10.1109/TITS.2017.2771501
  • Bolduc, A. P., Guo, L., & Jia, Y. (2019). Multimodel approach to personalized autonomous adaptive cruise control. IEEE Transactions on Intelligent Vehicles, 4 (2), 321–330. https://doi.org/10.1109/TIV.2019.2904419
  • Bose, A., & Ioannou, P. A. (2003). Analysis of traffic ow with mixed manual and semiautomated vehicles. IEEE Transactions on Intelligent Transportation Systems, 4 (4), 173–188. https://doi.org/10.1109/TITS.2003.821340
  • Calvert, S., Schakel, W., & Van Lint, J. (2017). Will automated vehicles negatively impact traffic flow? Journal of Advanced Transportation, 2017, 1–17. https://doi.org/10.1155/2017/3082781
  • Chowdhury, D., Santen, L., & Schadschneider, A. (2000). Statistical physics of vehicular traffic and some related systems. Physics Reports, 329 (4-6), 199–329. https://doi.org/10.1016/S0370-1573(99)00117-9
  • Ciuffo, B., Anesiadou, A., Mattas, K., & Makridis, M. (2020). Open ACC database. European Commission, Joint Research Centre (JRC). http://data.europa.eu/89h/9702c950-c80f-4d2f-982f-44d06ea0009f.
  • Darbha, S., Konduri, S., & Pagilla, P. R. (2020). Vehicle platooning with constant spacing strategies and multiple vehicle look ahead information. IET Intelligent Transport Systems, 14 (6), 589–600. https://doi.org/10.1049/iet-its.2019.0204
  • di Bernardo, M., Falcone, P., Salvi, A., & Santini, S. (2016). Design, analysis, and experimental validation of a distributed protocol for platooning in the presence of time-varying heterogeneous delays. IEEE Transactions on Control Systems Technology, 24 (2), 413–427.
  • Elbanhawi, M., Simic, M., & Jazar, R. (2015). In the passenger seat: Investigating ride comfort measures in autonomous cars. IEEE Intelligent Transportation Systems Magazine, 7 (3), 4–17. https://doi.org/10.1109/MITS.2015.2405571
  • Fadhloun, K., & Rakha, H. (2020). A novel vehicle dynamics and human behavior car-following model: Model development and preliminary testing. International Journal of Transportation Science and Technology, 9 (1), 14–28. https://doi.org/10.1016/j.ijtst.2019.05.004
  • Feng, S., Zhang, Y., Li, S. E., Cao, Z., Liu, H. X., & Li, L. (2019). String stability for vehicular platoon control: Definitions and analysis methods. Annual Reviews in Control, 47, 81–97. https://doi.org/10.1016/j.arcontrol.2019.03.001
  • Gao, F., Li, S. E., Zheng, Y., & Kum, D. (2016). Robust control of heterogeneous vehicular platoon with uncertain dynamics and communication delay. IET Intelligent Transport Systems, 10 (7), 503–513. https://doi.org/10.1049/iet-its.2015.0205
  • Gazis, D. C., Herman, R., & Rothery, R. W. (1961). Nonlinear follow-the-leader models of traffic flow. Operations Research, 9 (4), 545–567. https://doi.org/10.1287/opre.9.4.545
  • Ge, H., Cheng, R., & Li, Z. (2008). Two velocity difference model for a car following theory. Physica A: Statistical Mechanics and Its Applications, 387 (21), 5239–5245. https://doi.org/10.1016/j.physa.2008.02.081
  • Gunter, G., Gloudemans, D., Stern, R. E., McQuade, S., Bhadani, R., Bunting, M., … Work, D. B. (2020). Are commercially implemented adaptive cruise control systems string stable? IEEE Transactions on Intelligent Transportation Systems, Early Access Article, 1–12. https://doi.org/10.1109/TITS.2020.3000682
  • Gunter, G., Janssen, C., Barbour, W., Stern, R. E., & Work, D. B. (2020). Model-based string stability of adaptive cruise control systems using field data. IEEE Transactions on Intelligent Vehicles, 5 (1), 90–99. https://doi.org/10.1109/TIV.2019.2955368
  • Guo, G., Li, P., & Hao, L. (2020). Adaptive fault-tolerant control of platoons with guaranteed traffic flow stability. IEEE Transactions on Vehicular Technology, 69 (7), 6916–6927. https://doi.org/10.1109/TVT.2020.2990279
  • Guo, G., & Yue, W. (2012). Autonomous platoon control allowing range-limited sensors. IEEE Transactions on Vehicular Technology, 61 (7), 2901–2912. https://doi.org/10.1109/TVT.2012.2203362
  • Helbing, D. (2001). Traffic and related self-driven many-particle systems. Reviews of Modern Physics, 73 (4), 1067–1141. https://doi.org/10.1103/RevModPhys.73.1067
  • Herman, R., Montroll, E. W., Potts, R. B., & Rothery, R. W. (1959). Traffic dynamics: analysis of stability in car following. Operations Research, 7 (1), 86–106. https://doi.org/10.1287/opre.7.1.86
  • Ioannou, P., & Chien, C. (1993). Autonomous intelligent cruise control. IEEE Transactions on Vehicular Technology, 42 (4), 657–672. https://doi.org/10.1109/25.260745
  • ISO 15622:2018(en). (2018). Intelligent transport systems | Adaptive cruise control systems Performance requirements and test procedures (Standard). International Organization for Standardization.
  • Janson, S. (2010). Roots of polynomials of degrees 3 and 4. arXiv:1009.2373.
  • Jia, D., Ngoduy, D., & Vu, H. L. (2019). A multiclass microscopic model for heterogeneous platoon with vehicle-to-vehicle communication. Transportmetrica B: Transport Dynamics, 7 (1), 311–335.
  • Jiang, R., Wu, Q., & Zhu, Z. (2001). Full velocity difference model for a car-following theory. Physical Review E, 64 (1), 017101. https://doi.org/10.1103/PhysRevE.64.017101
  • Kayacan, E. (2017). Multiobjective H1 control for string stability of cooperative adaptive cruise control systems. IEEE Transactions on Intelligent Vehicles, 2 (1), 52–61. https://doi.org/10.1109/TIV.2017.2708607
  • Kesting, A., Treiber, M., & Helbing, D. (2010). Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 368, 4585–4605.
  • Kesting, A., Treiber, M., Schonhof, M., & Helbing, D. (2008). Adaptive cruise control design for active congestion avoidance. Transportation Research Part C: Emerging Technologies, 16 (6), 668– 683. https://doi.org/10.1016/j.trc.2007.12.004
  • Khound, P., Will, P., & Gronwald, F. (2020). Local and string stability conditions of a generalized adaptive cruise control system. In AmE 2020 - Automotive Meets Electronics; 11th GMM-Symposium (pp. 1–8).
  • Khound, P., Will, P., & Gronwald, F. (2021). Design methodology to derive over-damped string stable adaptive cruise control systems. IEEE Transactions on Intelligent Vehicles, Early Access Article, 1–13. https://dx.doi.org/10.1109/TIV.2021.3066056
  • Kim, T., Lovell, D. J., & Park, Y. (2007). Empirical analysis of underlying mechanisms and variability in car-following behavior. Transportation Research Record: Journal of the Transportation Research Board, 1999 (1), 170–179. https://doi.org/10.3141/1999-18
  • Kometani, E., & Sasaki, T. (1958). On the stability of traffic flow (report-I. ). Journal of Operations Research - Japan, 2 (1), 11–26.
  • Li, T., Chen, D., Zhou, H., Laval, J., & Xie, Y. (2021). Car-following behavior characteristics of adaptive cruise control vehicles based on empirical experiments. Transportation Research Part B: Methodological, 147, 67–91. https://doi.org/10.1016/j.trb.2021.03.003
  • Li, Y., Kang, Y., Yang, B., Peeta, S., Zhang, L., Zheng, T., & Li, Y. (2016). A sliding mode controller for vehicular traffic flow. Physica A: Statistical Mechanics and Its Applications, 462, 38–47. https://doi.org/10.1016/j.physa.2016.06.053
  • Lin, T.-W., Hwang, S.-L., & Green, P. A. (2009). Effects of time-gap settings of adaptive cruise control (ACC) on driving performance and subjective acceptance in a bus driving simulator. Safety Science, 47 (5), 620–625. https://doi.org/10.1016/j.ssci.2008.08.004
  • Lunze, J. (2019). Adaptive cruise control with guaranteed collision avoidance. IEEE Transactions on Intelligent Transportation Systems, 20 (5), 1897–1907. https://doi.org/10.1109/TITS.2018.2842115
  • Makridis, M., Mattas, K., Anesiadou, A., & Ciuffo, B. (2021). OpenACC. an open database of car-following experiments to study the properties of commercial ACC systems. Transportation Research Part C: Emerging Technologies, 125, 103047. https://doi.org/10.1016/j.trc.2021.103047
  • Makridis, M., Mattas, K., Borio, D., Giuliani, R., & Ciuffo, B. (2018). Estimating reaction time in adaptive cruise control system. In 2018 IEEE Intelligent Vehicles Symposium (IV) (pp. 1312–1317).
  • Makridis, M., Mattas, K., & Ciuffo, B. (2020). Response time and time headway of an adaptive cruise control. an empirical characterization and potential impacts on road capacity. IEEE Transactions on Intelligent Transportation Systems, 21 (4), 1677–1686. https://doi.org/10.1109/TITS.2019.2948646
  • Milanés, V., & Shladover, S. E. (2014). Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data. Transportation Research Part C: Emerging Technologies, 48, 285– 300. https://doi.org/10.1016/j.trc.2014.09.001
  • Milanes, V., & Shladover, S. E. (2016). Handling cut-in vehicles in strings of cooperative adaptive cruise control vehicles. Journal of Intelligent Transportation Systems, 20 (2), 178–191. https://doi.org/10.1080/15472450.2015.1016023
  • Montanino, M., Monteil, J., & Punzo, V. (2021). From homogeneous to heterogeneous traffic flows: Lp string stability under uncertain model parameters. Transportation Research Part B: Methodological, 146, 136–154. https://doi.org/10.1016/j.trb.2021.01.009
  • Montanino, M., & Punzo, V. (2021). On string stability of a mixed and heterogeneous traffic flow: A unifying modelling framework. Transportation Research Part B: Methodological, 144, 133–154. https://doi.org/10.1016/j.trb.2020.11.009
  • Monteil, J., Bouroche, M., & Leith, D. J. (2019). L2 and L1 stability analysis of heterogeneous traffic with application to parameter optimization for the control of automated vehicles. IEEE Transactions on Control Systems Technology, 27 (3), 934–949. https://doi.org/10.1109/TCST.2018.2808909
  • Moser, D., Schmied, R., Waschl, H., & del Re, L. (2018). Flexible spacing adaptive cruise control using stochastic model predictive control. IEEE Transactions on Control Systems Technology, 26 (1), 114–127. https://doi.org/10.1109/TCST.2017.2658193
  • Ngoduy, D. (2015). Effect of the car-following combinations on the instability of heterogeneous traffic flow. Transportmetrica B: Transport Dynamics, 3 (1), 44–58.
  • NGSIM (2006). URL. https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm.
  • Peppard, L. (1974). String stability of relative-motion PID vehicle control systems. IEEE Transactions on Automatic Control, 19 (5), 579–581. https://doi.org/10.1109/TAC.1974.1100652
  • Pipes, L. A. (1953). An operational analysis of traffic dynamics. Journal of Applied Physics, 24 (3), 274–281. https://doi.org/10.1063/1.1721265
  • Ploeg, J., van de Wouw, N., & Nijmeijer, H. (2014). Lp string stability of cascaded systems: Application to vehicle platooning. IEEE Transactions on Control Systems Technology, 22 (2), 786–793. https://doi.org/10.1109/TCST.2013.2258346
  • Ploeg, J., Scheepers, B. T. M., van Nunen, E., van de Wouw, N., & Nijmeijer, H. (2011). Design and experimental evaluation of cooperative adaptive cruise control. In 2011 14th international IEEE conference on Intelligent Transportation Systems (ITSC) (pp. 260–265).
  • Qin, W. B., & Orosz, G. (2020). Experimental validation of string stability for connected vehicles subject to information delay. IEEE Transactions on Control Systems Technology, 28 (4), 1203–1217. https://doi.org/10.1109/TCST.2019.2900609
  • Rajamani, R. (2012). Vehicle dynamics and control (2nd ed.). Springer.
  • Rosenfeld, A., Bareket, Z., Goldman, C. V., LeBlanc, D. J., & Tsimhoni, O. (2015). Learning drivers' behavior to improve adaptive cruise control. Journal of Intelligent Transportation Systems, 19 (1), 18–31. https://doi.org/10.1080/15472450.2014.889960
  • Stern, R. E., Cui, S., Delle Monache, M. L., Bhadani, R., Bunting, M., Churchill, M., Hamilton, N., Haulcy, R., Pohlmann, H., Wu, F., Piccoli, B., Seibold, B., Sprinkle, J., & Work, D. B. (2018). Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments. Transportation Research Part C: Emerging Technologies, 89, 205– 221. https://doi.org/10.1016/j.trc.2018.02.005
  • Sun, J., Zheng, Z., & Sun, J. (2018). Stability analysis methods and their applicability to car-following models in conventional and connected environments. Transportation Research Part B: Methodological, 109, 212– 237. https://doi.org/10.1016/j.trb.2018.01.013
  • Swaroop, D., & Hedrick, J. K. (1996). String stability of interconnected systems. IEEE Transactions on Automatic Control, 41 (3), 349–357. https://doi.org/10.1109/9.486636
  • Swaroop, D. (1997). String stability of interconnected systems: an application to platooning in automated highway systems [Doctoral dissertation, University of California]. Retrieved from https://escholarship.org/uc/item/86z6h1b1
  • Tiernan, T., Richardson, N., Azeredo, P., Najm, W. G., & Lochrane, T. (2017). Test and evaluation of vehicle platooning proof-of-concept based on cooperative adaptive cruise control (Tech. Rep.). John A. Volpe National Transportation Systems Center (US),
  • Tomoeda, A., Miyaji, T., & Ikeda, K. (2018). Bifurcation structure of a car-following model with nonlinear dependence on the relative velocity. Transportmetrica A: Transport Science, 14 (5-6), 503–519. https://doi.org/10.1080/23249935.2017.1351007
  • Tordeux, A., Lassarre, S., & Roussignol, M. (2010). An adaptive time gap car-following model. Transportation Research Part B: Methodological, 44 (8-9), 1115–1131. https://doi.org/10.1016/j.trb.2009.12.018
  • Treiber, M., Hennecke, A., & Helbing, D. (2000, August). Congested traffic states in empirical observations and microscopic simulations. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 62 (2 Pt A), 1805–1824. https://doi.org/10.1103/physreve.62.1805
  • Treiber, M., & Kesting, A. (2013). Traffic flow dynamics. Springer.
  • Wang, M., Hoogendoorn, S. P., Daamen, W., van Arem, B., Shyrokau, B., & Happee, R. (2018). Delay-compensating strategy to enhance string stability of adaptive cruise controlled vehicles. Transportmetrica B: Transport Dynamics, 6 (3), 211–229.
  • Wang, J., & Rajamani, R. (2004). Should adaptive cruise-control systems be designed to maintain a constant time gap between vehicles? IEEE Transactions on Vehicular Technology, 53 (5), 1480–1490. https://doi.org/10.1109/TVT.2004.832386
  • Wang, H., Wang, W., Chen, J., Xu, C., & Li, Y. (2019). Can we trust the speed-spacing relationship estimated by car-following model from non-stationary trajectory data? Transportmetrica A: Transport Science, 15 (2), 263–284. https://doi.org/10.1080/23249935.2018.1466211
  • Weaver, S. M., Balk, S. A., & Philips, B. H. (2020). Merging into strings of cooperativeadaptive cruise-control vehicles. Journal of Intelligent Transportation Systems, 0 (0), 1–11.
  • Wei, Y., Hu, Y., Dai, Y., & Wang, Y. (2016). A generalized Pade approximation of time delay operator. International Journal of Control, Automation and Systems, 14(1), 181–187. https://doi.org/10.1007/s12555-013-0240-4
  • Wilson, R., & Ward, J. (2011). Car-following models: fifty years of linear stability analysis -a mathematical perspective. Transportation Planning and Technology, 34 (1), 3–18. https://doi.org/10.1080/03081060.2011.530826
  • Wu, C., Xu, Z., Liu, Y., Fu, C., Li, K., & Hu, M. (2020). Spacing policies for adaptive cruise control: A survey. IEEE Access., 8, 50149–50162. https://doi.org/10.1109/ACCESS.2020.2978244
  • Xiao, L., & Gao, F. (2011). Practical string stability of platoon of adaptive cruise control vehicles. IEEE Transactions on Intelligent Transportation Systems, 12 (4), 1184–1194. https://doi.org/10.1109/TITS.2011.2143407
  • Xiao, L., Wang, M., & van Arem, B. (2017). Realistic car-following models for microscopic simulation of adaptive and cooperative adaptive cruise control vehicles. Transportation Research Record: Journal of the Transportation Research Board, 2623(1), 1–9. https://doi.org/10.3141/2623-01
  • Xing, H., Ploeg, J., & Nijmeijer, H. (2019). Smith predictor compensating for vehicle actuator delays in cooperative acc systems. IEEE Transactions on Vehicular Technology, 68 (2), 1106–1115. https://doi.org/10.1109/TVT.2018.2886467
  • Xing, H., Ploeg, J., & Nijmeijer, H. (2020). Compensation of communication delays in a cooperative ACC system. IEEE Transactions on Vehicular Technology, 69 (2), 1177–1189. https://doi.org/10.1109/TVT.2019.2960114
  • Xueyan, L., & Zheng, Y. (2015). Comparison of time delay processing methods in control system. In 2015 4th international conference on computer science and network technology (ICCSNT), 01, (pp. 1502–1505).
  • Yan, R., Yang, D., Huang, J., Jiang, K., & Jiao, X. (2021). Distributed car-following control for intelligent connected vehicle using improved super-twisting compensator subject to sudden velocity changes of leading vehicle. IEEE Transactions on Intelligent Transportation Systems, Early Access Article, 1–10. https://dx.doi.org/10.1109/TITS.2021.3060633
  • Zhang, L., & Orosz, G. (2016). Motif-based design for connected vehicle systems in presence of heterogeneous connectivity structures and time delays. IEEE Transactions on Intelligent Transportation Systems, 17 (6), 1638–1651. https://doi.org/10.1109/TITS.2015.2509782
  • Zheng, Y., Eben Li, S., Wang, J., Cao, D., & Li, K. (2016). Stability and scalability of homogeneous vehicular platoon: Study on the in fluence of information flow topologies. IEEE Transactions on Intelligent Transportation Systems, 17 (1), 14–26. https://doi.org/10.1109/TITS.2015.2402153
  • Zhou, J., & Peng, H. (2004). String stability conditions of adaptive cruise control algorithms. IFAC Proceedings Volumes, 37 (22), 649– 654. https://doi.org/10.1016/S1474-6670(17)30417-2
  • Zhou, J., & Peng, H. (2005). Range policy of adaptive cruise control vehicles for improved flow stability and string stability. IEEE Transactions on Intelligent Transportation Systems, 6(2), 229–237. https://doi.org/10.1109/TITS.2005.848359

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.