Publication Cover
Journal of Intelligent Transportation Systems
Technology, Planning, and Operations
Volume 27, 2023 - Issue 3
679
Views
5
CrossRef citations to date
0
Altmetric
Articles

Analysis on autonomous vehicle detection performance according to various road geometry settings

ORCID Icon, , ORCID Icon &
Pages 384-395 | Received 16 Dec 2020, Accepted 04 Jan 2022, Published online: 24 Feb 2022

References

  • Aoki, S., Higuchi, T., & Altintas, O. (2020). Cooperative perception with deep reinforcement learning for connected vehicles [Paper presentation]. 2020 IEEE Intelligent Vehicles Symposium (IV), 328–334. https://doi.org/10.1109/IV47402.2020.9304570
  • AutonomouStuff. (2019a). Continental ARS 408-21 Datasheet. https://autonomoustuff.com/wp-content/uploads/2020/08/ARS-408-21-whitelabel.pdf
  • AutonomouStuff. (2019b). Velodyne puck hi-res datasheet. Retrieved on Oct. 1, 2020, from https://autonomoustuff.com/products/velodyne-puck-hi-res
  • Bento, L. C., Parafita, R., Rakha, H. A., & Nunes, U. J. (2019). A study of the environmental impacts of intelligent automated vehicle control at intersections via V2V and V2I communications. Journal of Intelligent Transportation Systems, 23(1), 41–59. https://doi.org/10.1080/15472450.2018.1501272
  • Campbell, S., O’Mahony, N., Krpalcova, L., Riordan, D., Walsh, J., Murphy, A., & Ryan, C. (2018). Sensor technology in autonomous vehicles: A review [Paper presentation]. 2018 29th Irish Signals and Systems Conference (ISSC), 1–4. https://doi.org/10.1109/ISSC.2018.8585340
  • Chambers, D. H., Paglieroni, D. W., Mast, J. E., & Beer, N. R. (2013). Real-time vehicle-mounted multistatic ground penetrating radar imaging system for buried object detection. https://pdfs.semanticscholar.org/eedc/43318733398626ad642b32427c52df8dbd4e.pdf
  • Dai, B., Xu, F., Cao, Y., & Xu, Y. (2021). Hybrid sensing data fusion of cooperative perception for autonomous driving with augmented vehicular reality. IEEE Systems Journal, 15(1), 1413–1422. https://doi.org/10.1109/JSYST.2020.3007202
  • De Silva, V., Roche, J., & Kondoz, A. (2018). Fusion of LiDAR and camera sensor data for environment sensing in driverless vehicles. Loughborough University. Preprint, abs/1710.0.
  • EpoSS. (2015). European roadmap smart systems for automated driving. https://www.smart-systems-integration.org/system/files/document/2014AprilEPoSSRoadmapAutomatedDriving.pdf
  • EX. (2020). Public data portal. Korea’s Expressway Corporation. http://data.ex.co.kr/
  • Forbes. (2017). How South Korea plans to put driverless cars on the road by 2020. Forbes. https://www.forbes.com/sites/elaineramirez/2017/02/07/how-south-korea-plans-to-put-driverless-cars-on-the-road-by-2020/#44554f4f448f
  • Gao, H., Cheng, B., Wang, J., Li, K., Zhao, J., & Li, D. (2018). Object classification using CNN-based fusion of vision and LIDAR in autonomous vehicle environment. IEEE Transactions on Industrial Informatics, 14(9), 4224–4230. https://doi.org/10.1109/TII.2018.2822828
  • Goodin, C., Carruth, D., Doude, M., & Hudson, C. (2019). Predicting the influence of rain on LIDAR in ADAS. Electronics, 8(1), 89. https://doi.org/10.3390/electronics8010089
  • Gyeonggi Province. (2020). Korea’s Gyeonggi Province Road Safety Division. GyeonggiProvince. https://english.gg.go.kr/organization/#org-result
  • Heinzler, R., Schindler, P., Seekircher, J., Ritter, W., & Stork, W. (2019). Weather influence and classification with automotive lidar sensors. IEEE Intelligent Vehicles Symposium, Proceedings, 2019-June, 1527–1534. https://doi.org/10.1109/IVS.2019.8814205
  • Hobert, L., Festag, A., Llatser, I., Altomare, L., Visintainer, F., & Kovacs, A. (2015). Enhancements of V2X communication in support of cooperative autonomous driving. IEEE Communications Magazine, 53(12), 64–70. https://doi.org/10.1109/MCOM.2015.7355568
  • Ilci, V., & Toth, C. (2020). High definition 3D map creation using GNSS/IMU/LiDAR sensor integration to support autonomous vehicle navigation. Sensors, 20(3), 899. https://doi.org/10.3390/s20030899
  • Kato, T., Ninomiya, Y., & Masaki, I. (2002). An obstacle detection method by fusion of radar and motion stereo. IEEE Transactions on Intelligent Transportation Systems, 3(3), 182–187. https://doi.org/10.1109/TITS.2002.802932
  • Kim, S.-W., & Liu, W. (2016). Cooperative autonomous driving: A mirror neuron inspired intention awareness and cooperative perception approach. IEEE Intelligent Transportation Systems Magazine, 8(3), 23–32. https://doi.org/10.1109/MITS.2016.2573339
  • Kim, S.-W., Liu, W., Ang, M. H., Frazzoli, E., & Rus, D. (2015). The impact of cooperative perception on decision making and planning of autonomous vehicles. IEEE Intelligent Transportation Systems Magazine, 7(3), 39–50. https://doi.org/10.1109/MITS.2015.2409883
  • Kocic, J., Jovicic, N., & Drndarevic, V. (2018). Sensors and sensor fusion in autonomous vehicles. 2018 26th Telecommunications Forum, TELFOR 2018 - Proceedings. https://doi.org/10.1109/TELFOR.2018.8612054
  • Kutila, M., Pyykonen, P., Holzhuter, H., Colomb, M., & Duthon, P. (2018)., Automotive LiDAR performance verification in fog and rain. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2018-November, 1695–1701. https://doi.org/10.1109/ITSC.2018.8569624
  • Lange, S., Ulbrich, F., & Goehring, D. (2016). Online vehicle detection using deep neural networks and lidar based preselected image patches. IEEE Intelligent Vehicles Symposium, Proceedings, 2016-August, 954–959. https://doi.org/10.1109/IVS.2016.7535503
  • Lee, H., Lee, J., & Chung, Y. (2021). Traffic density estimation using vehicle sensor data. Journal of Intelligent Transportation Systems, 25, 1–15. https://doi.org/10.1080/15472450.2021.1966626
  • Leibe, B., Schindler, K., Cornelis, N., & Van Gool, L. (2008). Coupled object detection and tracking from static cameras and moving vehicles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(10), 1683–1698. https://doi.org/10.1109/TPAMI.2008.170
  • MOLIT. (2020). Road transport data register. Korea’s Ministry of Land, Infrastructure, and Transport. http://www.molit.go.kr/network/network.jsp?a=8
  • Muckenhuber, S., Museljic, E., & Stettinger, G. (2021). Performance evaluation of a state-of-the-art automotive radar and corresponding modeling approaches based on a large labeled dataset. Journal of Intelligent Transportation Systems, 1–20. https://doi.org/10.1080/15472450.2021.1959328
  • Nabati, R., & Qi, H. (2019). RRPN: Radar Region Proposal Network for object detection in autonomous vehicles [Paper presentation]. Proceedings - International Conference on Image Processing, ICIP, 2019-September, 3093–3097. https://doi.org/10.1109/ICIP.2019.8803392
  • Olia, A., Razavi, S., Abdulhai, B., & Abdelgawad, H. (2018). Traffic capacity implications of automated vehicles mixed with regular vehicles. Journal of Intelligent Transportation Systems, 22(3), 244–262. https://doi.org/10.1080/15472450.2017.1404680
  • Premebida, C., Monteiro, G., Nunes, U., & Peixoto, P. (2007). A Lidar and vision-based approach for pedestrian and vehicle detection and tracking [Paper presentation]. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 1044–1049. https://doi.org/10.1109/ITSC.2007.4357637
  • Qi, G., Guan, W., Li, X., Hounsell, N., & Stanton, N. A. (2019). Vehicle sensor data-based analysis on the driving style differences between operating indoor simulator and on-road instrumented vehicle. Journal of Intelligent Transportation Systems, 23(2), 144–160. https://doi.org/10.1080/15472450.2018.1525534
  • Rao, Q., & Frtunikj, J. (2018). Deep learning for self-driving cars: Chances and challenges [Paper presentation]. 2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS), 35–38. https://doi.org/10.1145/3194085.3194087
  • Takagi, K., Morikawa, K., Ogawa, T., & Saburi, M. (2006). Road environment recognition using on-vehicle LIDAR. IEEE Intelligent Vehicles Symposium, Proceedings, 120–125. https://doi.org/10.1109/ivs.2006.1689615
  • Tang, L., Shi, Y., He, Q., Sadek, A. W., & Qiao, C. (2020). Performance test of autonomous vehicle lidar sensors under different weather conditions. Transportation Research Record: Journal of the Transportation Research Board, 2674(1), 319–329. https://doi.org/10.1177/0361198120901681
  • USDOT. (2020). USDOT automated vehicles activities. The United States Department of Transportation. https://www.transportation.gov/AV
  • Van Brummelen, J., O’Brien, M., Gruyer, D., & Najjaran, H. (2018). Autonomous vehicle perception: The technology of today and tomorrow. Transportation Research Part C: Emerging Technologies, 89, 384–406. https://doi.org/10.1016/j.trc.2018.02.012
  • Yamaguchi, K., Kato, T., & Ninomiya, Y. (2006). Vehicle ego-motion estimation and moving object detection using a monocular camera [Paper presentation]. Proceedings - International Conference on Pattern Recognition, 4, 610–613. https://doi.org/10.1109/ICPR.2006.1165
  • Yang, C. Y. D., & Fisher, D. L. (2021). Safety impacts and benefits of connected and automated vehicles: How real are they? Journal of Intelligent Transportation Systems , 25(2), 135–138. https://doi.org/10.1080/15472450.2021.1872143
  • Yang, C. Y. D., Ozbay, K., & Ban, X. (2017). Developments in connected and automated vehicles. Journal of Intelligent Transportation Systems, 21(4), 251–254. https://doi.org/10.1080/15472450.2017.1337974
  • Zeng, Y., Hu, Y., Liu, S., Ye, J., Han, Y., Li, X., & Sun, N. (2018). RT3D: Real-time 3-D vehicle detection in LiDAR point cloud for autonomous driving. IEEE Robotics and Automation Letters, 3(4), 3434–3440. https://doi.org/10.1109/LRA.2018.2852843
  • Zhang, Z., Zheng, J., Xu, H., Wang, X., Fan, X., & Chen, R. (2020). Automatic background construction and object detection based on roadside LiDAR. IEEE Transactions on Intelligent Transportation Systems, 21(10), 4086–4097. https://doi.org/10.1109/TITS.2019.2936498

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.