1,532
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Number Stroop Effects in Arabic Digits and ASL Number Signs: The Impact of Age and Setting of Language Acquisition

ORCID Icon &

References

  • Algom, D., Dekel, A., & Pansky, A. (1996). The perception of number from the separability of the stimulus: The Stroop effect revisited. Memory and Cognition, 24(5), 557–572. https://doi.org/10.3758/BF03201083
  • Anderson, A., Anderson, J., & Shapiro, J. (2005). Supporting multiple literacies: Parents’ and children’s mathematical talk within storybook reading. Mathematics Education Research Journal, 16(3), 5–26. https://doi.org/10.1007/BF03217399
  • Arfé, B., Lucangeli, D., Genovese, E., Monzani, D., Gubernale, M., Trevisi, P., & Santarelli, R. (2011). Analogic and symbolic comparison of numerosity in preschool children with cochlear implants. Deafness & Education International, 13(1), 34–45. https://doi.org/10.1179/1557069X11Y.0000000002
  • Ashkenazi, S., Henik, A., Ifergane, G., & Shelef, I. (2008). Basic numerical processing in left intraparietal sulcus (IPS) acalculia. Cortex, 44(4), 439–448. https://doi.org/10.1016/j.cortex.2007.08.008
  • Ashkenazi, S., Rubinsten, O., & Henik, A. (2009). Attention, automaticity, and developmental dyscalculia. Neuropsychology, 23(4), 535–540. https://doi.org/10.1037/a0015347
  • Bates, D., Maechler, M., Bolker, B., Walker, S., Haubo, R., & Christensen, B., (2016). CRAN Repos Package lme4: Linear mixed-effects models using Eigen and S4. 1–113
  • Baus, C., Carreiras, M., & Emmorey, K. (2013). When does iconicity in sign language matter? Language and Cognitive Processes, 28(3), 261–271. https://doi.org/10.1080/01690965.2011.620374
  • Berk, S., & Lillo-Martin, D. (2012). The two-word stage: Motivated by linguistic or cognitive constraints? Cognitive Psychology, 65(1), 118–140. https://doi.org/10.1016/j.cogpsych.2012.02.002
  • Besner, D., & Coltheart, M. (1979). Ideographic and alphabetic processing in skilled reading of English. Neuropsychologia, 17(5), 467–472. https://doi.org/10.1016/0028-3932(79)90053-8
  • Bosworth, R. G., & Emmorey, K. (2010). Effects of iconicity and semantic relatedness on Lexical access in American sign language. Journal of Experimental Psychology: Learning Memory and Cognition, 36(6), 1573–1581. https://doi.org/10.1037/a0020934
  • Boudreault, P., & Mayberry, R. I. (2006). Grammatical processing in American sign language: Age of first-language acquisition effects in relation to syntactic structure. Language and Cognitive Processes, 21(5), 608–635. https://doi.org/10.1080/01690960500139363
  • Brysbaert, M., Mandera, P., & Keuleers, E. (2017). The word frequency effect in word processing: An updated review Current Directions in Psychological Science. 27(1), 45–50. https://doi.org/10.1177/0963721417727521
  • Bugg, J. M., DeLosh, E. L., Davalos, D. B., & Davis, H. P. (2007). Age differences in stroop interference: Contributions of general slowing and task-specific deficits. Aging, Neuropsychology, and Cognition, 14(2), 155–167. https://doi.org/10.1080/138255891007065
  • Bull, R., Blatto-Vallee, G., & Fabich, M. (2006). Subitizing, magnitude representation, and magnitude retrieval in deaf and hearing adults. Journal of Deaf Studies and Deaf Education, 11(3), 289–302. https://doi.org/10.1093/deafed/enj038
  • Bull, R., Marschark, M., & Blatto-Vallee, G. (2005). SNARC hunting: Examining number representation in deaf students. Learning and Individual Differences, 15(3), 223–236. https://doi.org/10.1016/j.lindif.2005.01.004
  • Campbell, J. I. D., & Alberts, N. M. (2009). Operation-specific effects of numerical surface form on arithmetic strategy. Journal of Experimental Psychology: Learning Memory and Cognition, 35(4), 999–1011. https://doi.org/10.1037/a0015829
  • Campbell, J. I. D., & Epp, L. J. (2004). An encoding-complex approach to numerical cognition in Chinese-English bilinguals. Canadian Journal of Experimental Psychology, 58(4), 229–244. https://doi.org/10.1037/h0087447
  • Campbell, J. I. D., & Fugelsang, J. (2001). Strategy choice for arithmetic verification: Effects of numerical surface form. Cognition, 80(3), B21–B30. https://doi.org/10.1016/S0010-0277(01)00115-9
  • Carey, S. (2009). Where our number concepts come from. The Journal of Philosophy, 106(4), 220–254. http://www.ncbi.nlm.nih.gov/pubmed/23136450
  • Cheng, Q., & Mayberry, R. I. (2019). Acquiring a first language in adolescence: The case of basic word order in American sign language. Journal of Child Language, 46(2), 214–240. https://doi.org/10.1017/S0305000918000417
  • Cheng, Q., & Mayberry, R. I. (2021). When event knowledge overrides word order in sentence comprehension: Learning a first language after childhood. Developmental Science 24(5), e13073. https://doi.org/10.1111/desc.13073
  • Cheng, Q., Roth, A., Halgren, E., & Mayberry, R. I. (2019). Effects of early language deprivation on brain connectivity: Language pathways in deaf native and late first-language learners of American sign language. Frontiers in Human Neuroscience, 13, 320. https://doi.org/10.3389/fnhum.2019.00320
  • Chinello, A., de Hevia, M. D., Geraci, C., & Girelli, L. (2012). Finding the spatial-numerical association of response codes (SNARC) in signed numbers: Notational effects in accessing number representation. Functional Neurology, 27(3), 177–185. http://www.ncbi.nlm.nih.gov/pubmed/23402679
  • Chrisomalis, S. (2019). A cognitive typology for numerical notation. Cambridge Archaeological Journal. 14(1), 37–52 . https://doi.org/10.1017/S0959774304000034
  • Chrisomalis, S. (2020). Reckonings: Numerals, cognition, and history. MIT Press.
  • Cohen, D. J. (2009). Integers do not automatically activate their quantity representation. Psychonomic Bulletin and Review, 16(2), 332–336. https://doi.org/10.3758/PBR.16.2.332
  • Cohen Kadosh, R., Cohen Kadosh, K., Kaas, A., Henik, A., & Goebel, R. (2007). Notation-dependent and -independent representations of numbers in the parietal lobes. Neuron, 53(2), 307–314. https://doi.org/10.1016/j.neuron.2006.12.025
  • Cohen Kadosh, R., Gevers, W., & Notebaert, W. (2011). Sequential analysis of the numerical stroop effect reveals response suppression. Journal of Experimental Psychology: Learning Memory and Cognition, 37(5), 1243–1249. https://doi.org/10.1037/a0023550
  • Cohen Kadosh, R., Henik, A., & Rubinsten, O. (2008). Are Arabic and verbal numbers processed in different ways? Journal of Experimental Psychology: Learning, Memory, and Cognition. 34(6), 1377. https://doi.org/10.1037/a0013413
  • Cohen Kadosh, R., & Walsh, V. (2009). Numerical representation in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32(3–4), 313–328. https://doi.org/10.1017/S0140525X09990938
  • Coppola, M., Spaepen, E., & Goldin-Meadow, S. (2013). Communicating about quantity without a language model: Number devices in homesign grammar. Cognitive Psychology, 67(1–2), 1–25. h ttp://1 0.1 016/j.cogpsych.2 013.05.003
  • Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371–396. https://doi.org/10.1037/0096-3445.122.3.371
  • Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21(8), 355–361. https://doi.org/10.1016/S0166-2236(98)01263-6
  • Dehaene, S., & Mehler, J. (1992). Cross-linguistic regularities in the frequency of number words. Cognition, 43(1), 1–29. https://doi.org/10.1016/0010-0277(92)90030-L
  • DeRight, J., & Jorgensen, R. S. (2015). I just want my research credit: Frequency of suboptimal effort in a non-clinical healthy undergraduate sample. The Clinical Neuropsychologist, 29(1), 101–117. https://doi.org/10.1080/13854046.2014.989267
  • Epstein, K. I., Hillegeist, E. G., & American, J. G. (1994). Number processing in deaf college students. American Annals of the Deaf, 139(3), 336–347. https://doi.org/10.1353/aad.2012.0321
  • Ferjan Ramirez, N., Leonard, M. K., Davenport, T. S., Torres, C., Halgren, E., & Mayberry, R. I. (2016). Neural language processing in adolescent first-language learners: Longitudinal case studies in American sign language. Cerebral Cortex, 26(3), 1015–1026. https://doi.org/10.1093/cercor/bhu273
  • Ferjan Ramirez, N., Leonard, M. K., Halgren, E., & Mayberry, R. I. (2013). The neural correlates of childhood linguistic isolation. In R. H. S. Baiz & N. Goldman (Eds.), 37th Boston University Conference on language development (pp. 110–121). Cascadilla Press.
  • Ferjan Ramirez, N., Lieberman, A. M., & Mayberry, R. I. (2013). The initial stages of first-language acquisition begun in adolescence: When late looks early. Journal of Child Language, 40(2), 391–414. https://doi.org/10.1017/S0305000911000535
  • Fias, W. (2001). Two routes for the processing of verbal numbers: Evidence from the SNARC effect. Psychological Research, 65(4), 250–259. https://doi.org/10.1007/s004260100065
  • Fischer, M. H., Shaki, S., & Cruise, A. (2009). It takes just one word to quash a SNARC. Experimental Psychology, 56(5), 361–366. https://doi.org/10.1027/1618-3169.56.5.361
  • Flaherty, M., & Senghas, A. (2011). Numerosity and number signs in deaf Nicaraguan adults. Cognition, 121(3), 427–436. https://doi.org/10.1016/j.cognition.2011.07.007
  • Fromkin, V., Krashen, S., Curtiss, S., Rigler, D., & Rigler, M. (1974). The development of language in genie: A case of language acquisition beyond the “critical period. Brain and Language, 1(1), 81–107. https://doi.org/10.1016/0093-934X(74)90027-3
  • Gebuis, T., Cohen Kadosh, R., De Haan, E., & Henik, A. (2009). Automatic quantity processing in 5-year olds and adults. Cognitive Processing, 10(2), 133–142. https://doi.org/10.1007/s10339-008-0219-x
  • Gelman, R., & Butterworth, B. (2005). Number and language: How are they related? Trends in Cognitive Sciences, 9(1), 6–10. https://doi.org/10.1016/j.tics.2004.11.004
  • Girelli, L., Lucangeli, D., & Butterworth, B. (2000). The development of automaticity in accessing number magnitude. Journal of Experimental Child Psychology, 76(2), 104–122. https://doi.org/10.1006/jecp.2000.2564
  • Gottardis, L., Nunes, T., & Lunt, I. (2011). A synthesis of research on deaf and hearing children’s mathematical achievement. Deafness and Education International, 13(3), 131–150. https://doi.org/10.1179/1557069X11Y.0000000006
  • Hall, M. L., & Dills, S. (2020). The limits of “communication mode” as a construct. The Journal of Deaf Studies and Deaf Education, 25(4), 383–397. https://doi.org/10.1093/deafed/enaa009
  • Heine, A., Tamm, S., De Smedt, B., Schneider, M., Thaler, V., Torbeyns, J., Stern, E., Verschaffel, L., & Jacobs, A. (2010). The numerical stroop effect in primary school children: A comparison of low, normal, and high achievers. Child Neuropsychology, 16(5), 461–477. https://doi.org/10.1080/09297041003689780
  • Henik, A., & Tzelgov, J. (1982). Is three greater than five: The relation between physical and semantic size in comparison tasks. Memory & Cognition, 10(4), 389–395. https://doi.org/10.3758/BF03202431
  • Henner, J., Hoffmesiter, R., Fish, S., Rosenburg, P., & DiDonna, D. (2015). Bilingual instruction works even for deaf children of hearing parents. American Educational Research Association. https://s3.amazonaws.com/academia.edu.documents/52575238/Bilingual_Instruction_Works_Even_for_Dea.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1530665916&Signature=%2B4l4VdyPZle5P8gi5aIutzWge8c%3D&response-content-disposition=inline%3Bfilename%3DBil
  • Henner, J., Pagliaro, C., Sullivan, S., & Hoffmeister, R. (2021). Counting differently: Assessing mathematics achievement in signing deaf and hard of hearing children through a unique lens. American Annals of the Deaf, 166(3), 318–341. https://doi.org/10.1353/aad.2021.0023
  • Hermans, D., Knoors, H., Ormel, E., & Verhoeven, L. (2008). The relationship between the reading and signing skills of deaf children in bilingual education programs. Journal of Deaf Studies and Deaf Education, 13(4), 518–530. https://doi.org/10.1093/deafed/enn009
  • Holmes, J., & Adams, J. W. (2006). Working memory and children’s mathematical skills: Implications for mathematical development and mathematics curricula. Educational Psychology, 26(3), 339–366. https://doi.org/10.1080/01443410500341056
  • Hrastinski, I., & Wilbur, R. B. (2016). Academic achievement of deaf and hard-of-hearing students in an ASL/English bilingual program. Journal of Deaf Studies and Deaf Education, 21(2), 156–170. https://doi.org/10.1093/deafed/env072
  • Humphries, T., Kushalnagar, P., Mathur, G., Napoli, D. J., Padden, C., Rathmann, C., & Smith, S. (2016). Avoiding linguistic neglect of deaf children. Social Service Review, 90(4), 589–619. https://doi.org/10.1086/689543
  • Iversen, W., Nuerk, H.-C., Jäger, L., & Willmes, K. (2006). The influence of an external symbol system on number parity representation, or What’s odd about 6? Psychonomic Bulletin & Review, 13(4), 730–736. https://doi.org/10.3758/BF03193988
  • Iversen, W., Nuerk, H. C., & Willmes, K. (2004). Do signers think differently? The processing of number parity in deaf participants. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 40(1), 176–178. https://doi.org/10.1016/S0010-9452(08)70940-7
  • Kaufmann, L., Ischebeck, A., Weiss, E., Koppelstaetter, F., Siedentopf, C., Vogel, S. E., Gotwald, T., Marksteiner, J., & Wood, G. (2008). An fMRI study of the numerical Stroop task in individuals with and without minimal cognitive impairment. Cortex, 44(9), 1248–1255. https://doi.org/10.1016/j.cortex.2007.11.009
  • Koluchová, J. (1972). Severe deprivation in twins: A case study. Journal of Child Psychology and Psychiatry, 13(2), 107–114. https://doi.org/10.1111/j.1469-7610.1972.tb01124.x
  • Koluchová, J. (1976). The further development of twins after severe and prolonged deprivation: A second report. Journal of Child Psychology and Psychiatry, 17(3), 181–188. https://doi.org/10.1111/j.1469-7610.1976.tb00390.x
  • Kritzer, K. L. (2009). Barely started and already left behind: A descriptive analysis of the mathematics ability demonstrated by young deaf children. Journal of Deaf Studies and Deaf Education, 14(4), 409–421. https://doi.org/10.1093/deafed/enp015
  • Lange, C. M., Lane-Outlaw, S., Lange, W. E., & Sherwood, D. L. (2013). American sign language/English Bilingual model: A longitudinal study of academic growth. Journal of Deaf Studies and Deaf Education, 18(4), 532–544. https://doi.org/10.1093/deafed/ent027
  • Liu, X., Wang, H., Corbly, C. R., Zhang, J., & Joseph, J. E. (2006). The involvement of the inferior parietal cortex in the numerical stroop effect and the distance effect in a two-digit number comparison task. Journal of Cognitive Neuroscience, 18(9), 1518–1530. https://doi.org/10.1162/jocn.2006.18.9.1518
  • Marshall, C., Jones, A., Denmark, T., Mason, K., Atkinson, J., Botting, N., & Morgan, G. (2015). Deaf children’s non-verbal working memory is impacted by their language experience. Frontiers in Psychology, 6((MAY), 527). https://doi.org/10.3389/fpsyg.2015.00527
  • Mathôt, S., Schreij, D., & Theeuwes, J. (2012, June). OpenSesame: An open-source, graphical experiment builder for the social sciences. Behavior Research Methods, 44(2), 314–324. https://doi.org/10.3758/s13428-011-0168-7
  • Mayberry, R. I., Cheng, Q., Hatrak, M., & Ilkbasaran, D. (2017). Late L1 learners acquire simple but not syntactically complex structures. International Association for the Study of Child Language. 2017 Lyon.
  • Mayberry, R. I., Davenport, T., Roth, A., & Halgren, E. (2018). Neurolinguistic processing when the brain matures without language. Cortex, 99, 390–403. https://doi.org/10.1016/j.cortex.2017.12.011
  • Mayberry, R. I., Hatrak, M., Ilkbasaran, D., Cheng, Q., & Hall, M. L. (in prep.). Maturational Constraints on language development: Evidence for a closing of the critical period for language.
  • Mayberry, R. I., & Kluender, R. (2018). Rethinking the critical period for language: New insights into an old question from American sign language. Bilingualism: Language and Cognition, 21(5), 886–905. https://doi.org/10.1017/S1366728917000724
  • Mayberry, R. I., & Lock, E. (2003). Age constraints on first versus second language acquisition: Evidence for linguistic plasticity and epigenesis. Brain and Language, 87(3), 369–384. https://doi.org/10.1016/S0093-934X(03)00137-8
  • Metcalfe, A. W. S., & Campbell, J. I. D. (2007). The role of cue familiarity in adults’ strategy choices for simple addition. European Journal of Cognitive Psychology, 19(3), 356–373. https://doi.org/10.1080/09541440600872001
  • Mitchell, R. E., & Karchmer, M. A. (2004). Chasing the mythical ten percent: Parental hearing status of deaf and hard of hearing students in the United States. Sign Language Studies, 4(2), 47. https://doi.org/10.1353/sls.2004.0005
  • Newport, E. L. (1990). Maturational Constraints on Language Learning. COGNlTiVE SCIENCE, 14(1), 11–28. https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15516709cog1401_2
  • Pagliaro, C. M., & Kritzer, K. L. (2013). The math gap: A description of the mathematics performance of preschool-aged deaf/hard-of-hearing children. Journal of Deaf Studies and Deaf Education, 18(2), 139–160. https://doi.org/10.1093/deafed/ens070
  • Pansky, A., & Algom, D. (2002). Comparative judgment of numerosity and numerical magnitude: Attention preempts automaticity. Journal of Experimental Psychology. Learning, Memory, and Cognition, 28(2), 259–274. http://www.ncbi.nlm.nih.gov/pubmed/11911383
  • Pénicaud, S., Klein, D., Zatorre, R. J., Chen, J.-K., Witcher, P., Hyde, K., & Mayberry, R. I. (2013). Structural brain changes linked to delayed first language acquisition in congenitally deaf individuals. NeuroImage, 66, 42–49. https://doi.org/10.1016/j.neuroimage.2012.09.076
  • R CORE TEAM. (2016). R: A language and environment for statistical computing. 2018. R Foundation for Statistical Computing, Vienna, Austri.
  • Razpurker-Apfeld, I., & Koriat, A. (2006). Flexible mental processes in numerical size judgments: The case of Hebrew letters that are used to convey numbers. Psychonomic Bulletin & Review, 13(1), 78–83. https://doi.org/10.3758/BF03193816
  • Rousselle, L., & Noël, M. P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102(3), 361–395. https://doi.org/10.1016/j.cognition.2006.01.005
  • Rubinsten, O., & Henik, A. (2005). Automatic activation of internal magnitudes: A study of developmental dyscalculia. Neuropsychology, 19(5), 641–648. https://doi.org/10.1037/0894-4105.19.5.641
  • Rubinsten, O., Henik, A., Berger, A., & Shahar-Shalev, S. (2002). The development of internal representations of magnitude and their association with Arabic numerals. Journal of Experimental Child Psychology, 81(1), 74–92. https://doi.org/10.1006/jecp.2001.2645
  • Schwarz, W., & Heinze, H. J. (1998). On the interaction of numerical and size information in digit comparison: A behavioral and event-related potential study. Neuropsychologia, 36(11), 1167–1179. https://doi.org/10.1016/S0028-3932(98)00001-3
  • Sehyr, Z. S., Caselli, N., Cohen-Goldberg, A. M., & Emmorey, K. (2021). The ASL-LEX 2.0 project: A database of Lexical and phonological properties for 2,723 signs in American sign language. The Journal of Deaf Studies and Deaf Education, 26(2), 263–277. https://doi.org/10.1093/deafed/enaa038
  • Shaki, S., & Fischer, M. H. (2008). Reading space into numbers – A cross-linguistic comparison of the SNARC effect. Cognition, 108(2), 590–599. https://doi.org/10.1016/j.cognition.2008.04.001
  • Shaki, S., Fischer, M. H., Petrusic, W. M., & Shaki, S. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychonomic Bulletin & Review, 16(2), 328–331. https://doi.org/10.3758/PBR.16.2.328
  • Spaepen, E., Coppola, M., Flaherty, M., Spelke, E., & Goldin-Meadow, S. (2013). Generating a lexicon without a language model: Do words for number count? Journal of Memory and Language, 69(4), 496–505. https://doi.org/10.1016/j.jml.2013.05.004
  • Spaepen, E., Coppola, M., Spelke, E. S., Carey, S. E., & Goldin-Meadow, S. (2011). Number without a language model. Proceedings of the National Academy of Sciences, 108(8), 3163–3168. https://doi.org/10.1073/pnas.1015975108
  • Spelke, E. S. (2017). Language learning and development core knowledge, language, and number. Language Learning and Development, 13(2), 147–170. https://doi.org/10.1080/15475441.2016.1263572
  • Szucs, D., & Soltész, F. (2007). Event-related potentials dissociate facilitation and interference effects in the numerical Stroop paradigm. Neuropsychologia, 45(14), 3190–3202. https://doi.org/10.1016/j.neuropsychologia.2007.06.013
  • Takahashi, A., & Green, D. (1983). Numerical judgments with Kanji and Kana. Neuropsychologia, 21(3), 259–263. https://doi.org/10.1016/0028-3932(83)90042-8
  • Taub, S. F. (2001). Language from the body: Iconicity and metaphor in American sign language (Cambridge University Press.).
  • Traxler, C. B. (2000). The Stanford achievement test, 9th edition: National norming and performance standards for deaf and hard-of-hearing students. Journal of Deaf Studies and Deaf Education, 5(4), 337–348. https://doi.org/10.1093/deafed/5.4.337
  • Tzelgov, J., Meyer, J., & Henik, A. (1992). Automatic and intentional processing of numerical information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(1), 166–179. https://doi.org/10.1037/0278-7393.18.1.166
  • Vaid, J. (1985). Numerical size comparisons in a phonologically transparent script. Perception & Psychophysics, 37(6), 592–595. https://doi.org/10.3758/BF03204927
  • Vaid, J., & Corina, D. (1989). Visual field asymmetries in numerical size comparisons of digits, words, and signs. Brain and Language, 36(1), 117–126. http://www.ncbi.nlm.nih.gov/pubmed/2917283
  • Verhaeghen, P., & De Meersman, L. (1998). Aging and the Stroop effect: A meta-analysis. Psychology and Aging, 13(1), 120–126. https://doi.org/10.1037/0882-7974.13.1.120
  • West, R., & Baylis, G. C. (1998). Effects of increased response dominance and contextual disintegration on the Stroop interference effect in older adults. Psychology and Aging, 13(2), 206–217. http://www.ncbi.nlm.nih.gov/pubmed/9640582
  • Whelan, R. (2008). Effective analysis of reaction time data. The Psychological Record, 58(3), 475–482. https://doi.org/10.1007/BF03395630
  • White, S. L. J., Szucs, D., & Soltész, F. (2012). Symbolic number: The integration of magnitude and spatial representations in children aged 6 to 8years. Frontiers in Psychology, 3(JAN) 392.https://doi.org/10.3389/fpsyg.2011.00392
  • Wood, G., Willmes, K., Nuerk, H.-C., & Fischer, M. H. (2008). On the cognitive link between space and number: A meta-analysis of the SNARC effect. Psychology Science Quarterly, 50(4), 489. https://bit.ly/35HO2af
  • Wood, D., Wood, H., & Howarth, P. (1983). Mathematical abilities of deaf school-leavers. British Journal of Developmental Psychology, 1(1), 67–73. https://doi.org/10.1111/j.2044-835X.1983.tb00544.x
  • Wood, H. A., Wood, D. J., Kingsmill, M. C., French, J. R., & Howarth, S. P. (1984). The mathematical achievements of deaf children from different educational environments. The British Journal of Educational Psychology, 54 (Pt 3)(3), 254–264. https://doi.org/10.1111/j.2044-8279.1984.tb02589.x
  • Zarfaty, Y., Nunes, T., & Bryant, P. (2004). The performance of young deaf children in spatial and temporal number tasks. Journal of Deaf Studies and Deaf Education, 9(3), 315–326. https://doi.org/10.1093/deafed/enh034