1,013
Views
6
CrossRef citations to date
0
Altmetric
Research Papers

Analysis of spatiotemporal pattern and quantification of gastrointestinal slow waves caused by anticholinergic drugs

, , &
Pages 39-62 | Received 20 Dec 2016, Accepted 11 Feb 2017, Published online: 15 Mar 2017

REFERENCES

  • Ward SM, Beckett EA, Wang X, Baker F, Khoyi M, Sanders KM. Interstitial cells of Cajal mediate cholinergic neurotransmission from enteric motor neurons. J Neuroscience 2000; 20(4):1393-403.
  • Goyal RK, Chaudhury A. Mounting evidence against the role of ICC in neurotransmission to smooth muscle in the gut. Am J Physiol Gastrointest Liver Physiol 2010; 298(1):G10-G3; http://dx.doi.org/10.1152/ajpgi.00426.2009
  • Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterol 1996; 111(2):492-515; http://dx.doi.org/10.1053/gast.1996.v111.pm8690216
  • Sanders KM, Hwang SJ, Ward SM. Neuroeffector apparatus in gastrointestinal smooth muscle organs. J Physiol 2010; 588(23):4621-39; PMID:20921202; http://dx.doi.org/10.1113/jphysiol.2010.196030
  • Sarna SK. Are interstitial cells of Cajal plurifunction cells in the gut? Am J Physiol Gastrointest Liver Physiol 2008; 294(2):G372-G90; PMID:17932226; http://dx.doi.org/10.1152/ajpgi.00344.2007
  • Ward S, Sanders K. Role of interstitial cells of Cajal in neural control of gastrointestinal smooth muscles. Neurogastroenterol Motil 2004; 16(s1):112-7; PMID:15066015; http://dx.doi.org/10.1111/j.1743-3150.2004.00485.x
  • Ördög T. Do we need to revise the role of interstitial cells of Cajal in gastrointestinal motility? Am J Physiol Gastrointest Liver Physiol 2008; 294(2):G368-G71; PMID:18270367; http://dx.doi.org/10.1152/ajpgi.00530.2007
  • El-Sharkawy TY, Daniel EE. Electrical activity of small intestinal smooth muscle and its temperature dependence. Am J Physiol 1975; 229(5):1268-76; PMID:1200146
  • Feinberg M. The problems of anticholinergic adverse effects in older patients. Drugs Aging 1993; 3(4):335-48; PMID:8369593; http://dx.doi.org/10.2165/00002512-199303040-00004
  • Mintzer J, Burns A. Anticholinergic side-effects of drugs in elderly people. J R Soc Med 2000; 93(9):457; PMID:11089480
  • Costa M, Brookes SJ, Hennig GW. Anatomy and physiology of the enteric nervous system. Gut 2000; 47(suppl 4):iv15-iv9; PMID:11076898
  • Bajaras-Lopez C, Huizinga JD. Different mechanisms of contraction generation in circular muscle of canine colon. Am J Physiol 1989; 256(3 pt 1):G570-G80; PMID:2923215
  • Cousins H, Edwards F, Hickey H, Hill C, Hirst G. Electrical coupling between the myenteric interstitial cells of Cajal and adjacent muscle layers in the guinea-pig gastric antrum. J Physiol 2003; 550(3):829-44; PMID:12844505; http://dx.doi.org/10.1113/jphysiol.2003.042176
  • Kelly KA, Force RCL. Role of the gastric pacesetter potential defined by electrical pacing. Can J Physiol Pharmacol 1972; 50(10):1017-9; PMID:4637178; http://dx.doi.org/10.1139/y72-147
  • Lee JC, Thuneberg L, Berezin I, Huizinga JD. Generation of slow waves in membrane potential is an intrinsic property of interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 1999; 277(2):G409-G23.
  • Sanders KM, Ward SM, Koh SD. Interstitial cells: regulators of smooth muscle function. Physiol Rev 2014; 94(3):859-907; PMID:24987007; http://dx.doi.org/10.1152/physrev.00037.2013
  • Sanders KM, Koh SD, M.Ward S. Interstitial cells of Cajal as pacemakers of the gastrointestinal tract. Annu Rev Physiol 2006; 68:307-43; PMID:16460275; http://dx.doi.org/10.1146/annurev.physiol.68.040504.094718
  • Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 2012; 9(5):286-94; PMID:22392290; http://dx.doi.org/10.1038/nrgastro.2012.32
  • Cannon WB. Peristalsis, segmentation, and the myenteric reflex. Am J Physiol 1912; 30(1):114-28.
  • Husebye E. The patterns of small bowel motility: physiology and implications in organic disease and functional disorders. Neurogastroenterol Motil 1999; 11(3):141-61; PMID:10354340; http://dx.doi.org/10.1046/j.1365-2982.1999.00147.x
  • Makhlouf G, Johnson L. Neuromuscular function of the small intestine. Physiology of the gastrointestinal tract. 3 ed. New York: Raven Press; 1994. p. 977-90.
  • Lammers WJ, Stephen B, Slack JR. Similarities and differences in the propagation of slow waves and peristaltic waves. Am J Physiol Gastrointest Liver Physiol 2002; 283(3):G778-G86; PMID:12181194; http://dx.doi.org/10.1152/ajpgi.00390.2001
  • Furness JB. The enteric nervous system. Carlton (AU): Blackwell Publishing; 2006.
  • Goyal RK, Hirano I. The enteric nervous system. N Engl J Med 1996; 334(17):1106-15; PMID:8598871; http://dx.doi.org/10.1056/NEJM199604253341707
  • Kirchgessner A, Gershon M. Identification of vagal efferent fibers and putative target neurons in the enteric nervous system of the rat. J Comp Neurol 1989; 285(1):38-53; PMID:2568999; http://dx.doi.org/10.1002/cne.902850105
  • Zhang RX, Wang XY, Chen D, Huizinga J. Role of interstitial cells of Cajal in the generation and modulation of motor activity induced by cholinergic neurotransmission in the stomach. Neurogastroenterol Motil 2011; 23(9):e356-e71; PMID:21781228; http://dx.doi.org/10.1111/j.1365-2982.2011.01753.x
  • Blair PJ, Bayguinov Y, Sanders KM, Ward SM. Relationship between enteric neurons and interstitial cells in the primate gastrointestinal tract. Neurogastroenterol Motil 2012; 24:e437-e49; PMID:22805588; http://dx.doi.org/10.1111/j.1365-2982.2012.01975.x
  • Horiguchi K, Sanders KM, Ward SM. Enteric motor neurons form synaptic-like junctions with interstitial cells of Cajal in the canine gastric antrum. Cell Tissue Res 2003; 311(3):299-313; PMID:12658438
  • Mitsui R, Komuro T. Direct and indirect innervation of smooth muscle cells of rat stomach, with special reference to the interstitial cells of Cajal. Cell Tissue Res 2002; 309(2):219-27; PMID:12172781; http://dx.doi.org/10.1007/s00441-002-0592-1
  • Klein S, Seidler B, Kettenberger A, Sibaev A, Rohn M, Feil R, Allescher HD, Vanderwinden JM, Hofmann F, Schemann M, et al. Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nat Commun 2013; 4:1630; PMID:23535651; http://dx.doi.org/10.1038/ncomms2626
  • Kumpula EK, Bell JS, Soini H, Pitkälä KH. Anticholinergic drug use and mortality among residents of long-term care facilities: a prospective cohort study. J Clin Pharmacol 2011; 51(2):256-63; PMID:20489026; http://dx.doi.org/10.1177/0091270010368410
  • Ness J, Hoth A, Barnett MJ, Shorr RI, Kaboli PJ. Anticholinergic medications in community-dwelling older veterans: prevalence of anticholinergic symptoms, symptom burden, and adverse drug events. Am J Geriatr Pharmacother 2006; 4(1):42-51; PMID:16730620; http://dx.doi.org/10.1016/j.amjopharm.2006.03.008
  • Caulfield MP. Muscarinic receptors - characterization, coupling and function. Pharmacol Ther 1993; 58(3):319-79; PMID:7504306; http://dx.doi.org/10.1016/0163-7258(93)90027-B
  • Brenner GM, Stevens CW. Pharmacology. London: Elsevier Health Sciences; 2013. p. 63-8.
  • Mirakhur R. Anticholinergic drugs. Br J Anaesth 1979; 51(7):671-9; PMID:399194; http://dx.doi.org/10.1093/bja/51.7.671
  • Nair VP, Hunter JM. Anticholinesterases and anticholinergic drugs. Contin Educ Anaesth Crit Care Pain 2004; 4(5):164-8; http://dx.doi.org/10.1093/bjaceaccp/mkh045
  • Peters NL. Snipping the thread of life: antimuscarinic side effects of medications in the elderly. Arch Inter Med 1989; 149(11):2414-20; PMID:2684071; http://dx.doi.org/10.1001/archinte.1989.00390110020006
  • Hall JE. Guyton and Hall textbook of medical physiology. 13 ed. Philadelphia: Elsevier Health Sciences; 2015. p. 773-84.
  • Katzenschlager R, Sampaio C, Costa J, Lees A. Anticholinergics for symptomatic management of Parkinson's disease. Cochrane Database Syst Rev 2002; 3:CD003735
  • Tourtellotte WW, Potvin AR, Syndulko K, Hirsch SB, Gilden ER, Potvin JH, Hansch EC. Parkinson's disease: Cogentin® with sinemet®, a better response. Prog Neuropsychopharmacol Biol Psychiatry 1982; 6(1):51-5; PMID:7202230; http://dx.doi.org/10.1016/S0364-7722(82)80107-0
  • Pearlman DS. Antihistamines: pharmacology and clinical use. Drugs 1976; 12(4):258-73; PMID:9270; http://dx.doi.org/10.2165/00003495-197612040-00002
  • Simons FER, Akdis CA. Histamine and H1 antihistamines. Middleton's allergy: principles and practice. 8 ed. Philadelphia: Saunders; 2014. p. 1503-33.
  • Van Cauwenberge P, Bachert C, Passalacqua G, Bousquet J, Canonica G, Durham S, Fokkens WJ, Howarth PH, Lund V, Malling HJ, et al. Consensus statement on the treatment of allergic rhinitis. Allergy 2000; 55(2):116-34; PMID:10726726; http://dx.doi.org/10.1034/j.1398-9995.2000.00526.x
  • Morin AK, Jarvis CI, Lynch AM. Therapeutic options for sleep-maintenance and sleep-onset insomnia. Pharmacother 2007; 27(1):89-110; http://dx.doi.org/10.1592/phco.27.1.89
  • Viukari M, Miettinen P. Diazepam, promethazine and propiomazine as hypnotics in elderly inpatients. Neuropsychobiology 1984; 12(2-3):134-7; PMID:6152029; http://dx.doi.org/10.1159/000118126
  • Salahudeen MS, Duffull SB, Nishtala PS. Anticholinergic burden quantified by anticholinergic risk scales and adverse outcomes in older people: a systematic review. BMC Geriatrics 2015; 15(1):1; PMID:25559550; http://dx.doi.org/10.1186/s12877-015-0029-9
  • Zlotos DP, Bender W, Holzgrabe U. Muscarinic receptor agonists and antagonists. Expert Opin Ther Pat 1999; 9(8):1029-53; http://dx.doi.org/10.1517/13543776.9.8.1029
  • Galligan J, North R. Pharmacology and function of nicotinic acetylcholine and P2X receptors in the enteric nervous system. Neurogastroenterol Motil 2004; 16(s1):64-70; PMID:15066008; http://dx.doi.org/10.1111/j.1743-3150.2004.00478.x
  • Hoffman JM, Brooks EM, Mawe GM. Gastrointestinal Motility Monitor (GIMM). J Vis Exp 2010(46):e2435.
  • Regenthal R, Krueger M, Koeppel C, Preiss R. Drug levels: therapeutic and toxic serum/plasma concentrations of common drugs. J Clin Monit Comput 1999; 15(7):529-44; PMID:12578052; http://dx.doi.org/10.1023/A:1009935116877
  • Sanders KM, Ordög T, Ward SM. Physiology and pathophysiology of the interstitial cells of Cajal: from bench to bedside. IV. Genetic and animal models of GI motility disorders caused by loss of interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 2002; 282(5):G747-56; PMID:11960771; http://dx.doi.org/10.1152/ajpgi.00362.2001
  • Burns AJ, Lomax A, Torihashi S, Sanders KM, Ward SM. Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach. Proc Natl Acad Science 1996; 93(21):12008-13; http://dx.doi.org/10.1073/pnas.93.21.12008
  • Ward SM, Burns AJ, Torihashi S, Sanders KM. Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol 1994; 480(Pt 1):91-7; PMID:7853230; http://dx.doi.org/10.1113/jphysiol.1994.sp020343
  • Wood MJ, Hyman NH, Mawe GM. The effects of daikenchuto (DKT) on propulsive motility in the colon. J Surg Res 2010; 164(1):84-90; PMID:19631346; http://dx.doi.org/10.1016/j.jss.2009.03.068
  • Bogeski G, Shafton A, Kitchener P, Ferens D, Furness J. A quantitative approach to recording peristaltic activity from segments of rat small intestine in vivo. Neurogastroenterol Motil 2005; 17(2):262-72; PMID:15787946; http://dx.doi.org/10.1111/j.1365-2982.2004.00605.x
  • Hata F, Kataoka T, Takeuchi T, Yagasaki O, Yamano N. Differences in control of descending inhibition in the proximal and distal regions of rat colon. Br J Pharmacol 1990; 101(4):1011-5; PMID:2085703; http://dx.doi.org/10.1111/j.1476-5381.1990.tb14198.x
  • Bartho L, Holzer P, Donnerer J, Lembeck F. Effects of substance P, cholecystokinin octapeptide, bombesin, and neurotensin on the peristaltic reflex of the guinea-pig ileum in the absence and in the presence of atropine. Naunyn Schmiedeberg Arch Pharmacol 1982; 321(4):321-8; http://dx.doi.org/10.1007/BF00498521
  • Tonini M, Frigo G, Lecchini S, D'Angelo L, Crema A. Hyoscine-resistant peristalsis in guinea-pig ileum. Eur J Pharmacol 1981; 71(4):375-81; PMID:7250196; http://dx.doi.org/10.1016/0014-2999(81)90181-3
  • Adams A. Techniques of vascular control for deliberate hypotension during anaesthesia. Br J Anaesth 1975; 47(7):777-92; PMID:240372; http://dx.doi.org/10.1093/bja/47.7.777
  • Hirst G, Bramich N, Teramoto N, Suzuki H, Edwards F. Regenerative component of slow waves in the guinea-pig gastric antrum involves a delayed increase in Ca2+ and Cl− channels. J Physiol 2002; 540(3):907-19; PMID:11986379; http://dx.doi.org/10.1113/jphysiol.2001.014803
  • Kito Y, Fukuta H, Suzuki H. Components of pacemaker potentials recorded from the guinea pig stomach antrum. Pflügers Archiv 2002; 445(2):202-17; http://dx.doi.org/10.1007/s00424-002-0884-z
  • Zhu MH, Kim TW, Ro S, Yan W, Ward SM, Koh SD, Sanders KM. A Ca2+‐activated Cl− conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J Physiol 2009; 587(20):4905-18; http://dx.doi.org/10.1113/jphysiol.2009.176206
  • El-Sharkawy T, Szurszewski JH. Modulation of canine antral circular smooth muscle by acetylcholine, noradrenaline and pentagastrin. J Physiol 1978; 279:309; PMID:671353; http://dx.doi.org/10.1113/jphysiol.1978.sp012346
  • Kim TW, Koh SD, Ördög T, Ward SM, Sanders KM. Muscarinic regulation of pacemaker frequency in murine gastric interstitial cells of Cajal. J Physiol 2003; 546(2):415-25; PMID:12527728; http://dx.doi.org/10.1113/jphysiol.2002.028977
  • Liu S, Xu J, Chen JD. Roles of putative neurotransmitters in the regulation of gastric and intestinal slow waves in conscious dogs. J Gastroenterol Hepatol 2007; 22(7):1044-50; PMID:17608850; http://dx.doi.org/10.1111/j.1440-1746.2007.04916.x
  • Malysz J, Donnelly G, Huizinga JD. Regulation of slow wave frequency by IP3-sensitive calcium release in the murine small intestine. Am J Physiol Gastrointest Liver Physiol 2001; 280(3):G439-G48; PMID:11171626
  • Hara Y, Szurszewski JH. Effect of potassium and acetylcholine on canine intestinal smooth muscle. J Physiol 1986; 372(1):521-37; PMID:3723417; http://dx.doi.org/10.1113/jphysiol.1986.sp016023
  • Grasa L, Rebollar E, Arruebo M, Plaza M, Murillo M. The role of Ca2+ in the contractility of rabbit small intestine in vitro. J Physiol Pharmacol 2004; 55(3):639-50; PMID:15381833
  • Dickson EJ, Spencer NJ, Hennig GW, Bayguinov PO, Ren J, Heredia DJ, Smith TK. An enteric occult reflex underlies accommodation and slow transit in the distal large bowel. Gastroenterol 2007; 132(5):1912-24; PMID:17484884; http://dx.doi.org/10.1053/j.gastro.2007.02.047
  • Benard T, Bouchoucha M, Dupres M, Cugnenc P-H. In vitro analysis of rat intestinal wall movements at rest and during propagated contraction: a new method. Am J Physiol Gastrointest Liver Physiol 1997; 273(4):G776-G84.
  • O'Grady G, Angeli TR, Du P, Lahr C, Lammers WJ, Windsor JA, Abell TL, Farrugia G, Pullan AJ, Cheng LK. Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterol 2012; 143(3):589-98. e3; PMID:22643349; http://dx.doi.org/10.1053/j.gastro.2012.05.036
  • Shutt L, Bowes J. Atropine and hyoscine. Anaesthesia 1979; 34(5):476-90; PMID:382907; http://dx.doi.org/10.1111/j.1365-2044.1979.tb06327.x
  • Forrest AS, Ördög T, Sanders KM. Neural regulation of slow-wave frequency in the murine gastric antrum. Am J Physiol Gastrointest Liver Physiol 2006; 290(3):G486-G95; PMID:16166340; http://dx.doi.org/10.1152/ajpgi.00349.2005
  • Streutker C, Huizinga J, Driman D, Riddell R. Interstitial cells of Cajal in health and disease. Part I: normal ICC structure and function with associated motility disorders. Histopathology 2007; 50(2):176-89; PMID:17222246; http://dx.doi.org/10.1111/j.1365-2559.2006.02493.x
  • Rumessen JJ, Thuneberg L, Mikkelsen HB. Plexus muscularis profundus and associated interstitial cells. II. Ultrastructural studies of mouse small intestine. Anat Rec 1982; 203(1):129-46; PMID:7103120; http://dx.doi.org/10.1002/ar.1092030112
  • Wang XY, Patterson C, Huizinga JD. Cholinergic and nitrergic innervation of ICC-DMP and ICC-IM in the human small intestine. Neurogastroenterol Motil 2003; 15:531-43; PMID:14507353; http://dx.doi.org/10.1046/j.1365-2982.2003.00429.x
  • Hughes MJ, Andrews DW, Huizinga JD. Interstitial cells of Cajal generate a rhythmic pacemaker current. Nature Med 1998; 4(7):848–851.
  • Der-Silaphet T, Malysz J, Hagel S, Arsenault AL, Huizinga JD. Interstitial cells of Cajal direct normal propulsive contractile activity in the mouse small intestine. Gastroenterol 1998; 114(4):724-36; http://dx.doi.org/10.1016/S0016-5085(98)70586-4
  • Wu MJ, Kee KH, Na J, Kim SW, Bae Y, Shin DH, Choi S, Jun JY, Jeong HS, Park JS. Pituitary adenylate cyclase-activating polypeptide inhibits pacemaker activity of colonic interstitial cells of cajal. Kor J Physiol Pharmacol 2015; 19(5):435-40; http://dx.doi.org/10.4196/kjpp.2015.19.5.435
  • Yoon PJ, Parajuli SP, Zuo DC, Shahi PK, Oh HJ, Shin HR, Lee MJ, Yeum CH, Choi S, Jun JY. Interplay of hydrogen sulfide and nitric oxide on the pacemaker activity of interstitial cells of cajal from mouse small intestine. Chonnam Med J 2011; 47(2):72-9; PMID:22111064; http://dx.doi.org/10.4068/cmj.2011.47.2.72
  • Kendig DM, Hurst NR, Grider JR. Spatiotemporal mapping of motility in Ex vivo preparations of the intestines. J Vis Exp 2016; 107:53263; http://dx.doi.org/10.3791/53263
  • Koh SD, Sanders KM, Ward SM. Spontaneous electrical rhythmicity in cultured interstitial cells of Cajal from the murine small intestine. J Physiol 1998; 513(1):203-13; PMID:9782170; http://dx.doi.org/10.1111/j.1469-7793.1998.203by.x
  • Rhee PL, Lee JY, Son HJ, Kim JJ, Rhee JC, Kim S, Koh SD, Hwang SJ, Sanders KM, Ward SM. Analysis of pacemaker activity in the human stomach. J Physiol 2011; 589(24):6105-18; PMID:22005683; http://dx.doi.org/10.1113/jphysiol.2011.217497
  • Ryoo S-B, Oh H-K, Moon SH, Choe EK, Yu SA, Park S-H, Park KJ. Electrophysiological and mechanical characteristics in human ileal motility: Recordings of slow waves conductions and contractions, in vitro. Kor J Physiol Pharmacol 2015; 19(6):533-42; http://dx.doi.org/10.4196/kjpp.2015.19.6.533
  • Faussone-Pellegrini M, Cortesini C. The muscle coat of the lower esophageal sphincter in patients with achalasia and hypertensive sphincter. An electron microscopic study. J Submicrosc Cytol 1985; 17(4):673-85.
  • Khelif K, De Laet M-H, Chaouachi B, Segers V, Vanderwinden J-M. Achalasia of the cardia in Allgrove's (triple A) syndrome: histopathologic study of 10 cases. Am J Surg Pathol 2003; 27(5):667-72; PMID:12717251; http://dx.doi.org/10.1097/00000478-200305000-00010
  • Faussone-Pellegrini MS, Grover M, Pasricha PJ, Bernard CE, Lurken MS, Smyrk TC, Parkman HP, Abell TL, Snape WJ, Hasler WL, et al. Ultrastructural differences between diabetic and idiopathic gastroparesis. J Cell Mol Med 2012; 16(7):1573-81; PMID:21914127; http://dx.doi.org/10.1111/j.1582-4934.2011.01451.x
  • Grover M, Farrugia G, Lurken MS, Bernard CE, Faussone-Pellegrini MS, Smyrk TC, Parkman HP, Abell TL, Snape WJ, Hasler WL, et al. Cellular changes in diabetic and idiopathic gastroparesis. Gastroenterol 2011; 140(5):1575-85. e8; http://dx.doi.org/10.1053/j.gastro.2011.01.046
  • Ordög T. Interstitial cells of Cajal in diabetic gastroenteropathy. Neurogastroenterol Motil 2008; 20(1):8-18; http://dx.doi.org/10.1111/j.1365-2982.2007.01056.x
  • Feldstein AE, Miller SM, El-Youssef M, Rodeberg D, Lindor NM, Burgart LJ, Szurszewski JH, Farrugia G. Chronic intestinal pseudoobstruction associated with altered interstitial cells of cajal networks. J Pediatr Gastroenterol Nutr 2003; 36(4):492-7; PMID:12658043; http://dx.doi.org/10.1097/00005176-200304000-00016
  • Isozaki K, Hirota S, Miyagawa J-I, Taniguchi M, Shinomura Y, Matsuzawa Y. Deficiency of c-kit+ cells in patients with a myopathic form of chronic idiopathic intestinal pseudo-obstruction. Am J Gastroenterol 1997; 92(2).
  • Kenny S, Vanderwinden J-M, Rintala R, Connell M, Lloyd D, Vanderhaegen J, De Laet MH. Delayed maturation of the interstitial cells of Cajal: a new diagnosis for transient neonatal pseudoobstruction. Report of two cases. J Pediatr Surg 1998; 33(1):94-8; PMID:9473109
  • Yamataka A, Ohshiro K, Kobayashi H, Lane GJ, Yamataka T, Fujiwara T, Sunagawa M, Miyano T. Abnormal distribution of intestinal pacemaker (c-kit-positive) cells in an infant with chronic idiopathic intestinal pseudoobstruction. J Pediatr Surg 1998; 33(6):859-62; PMID:9660215; http://dx.doi.org/10.1016/S0022-3468(98)90660-1
  • He CL, Burgart L, Wang L, Pemberton J, Young-Fadok T, Szurszewski J, Farrugia G. Decreased interstitial cell of Cajal volume in patients with slow-transit constipation. Gastroenterol 2000; 118(1):14-21; http://dx.doi.org/10.1016/S0016-5085(00)70409-4
  • Lyford G, He C, Soffer E, Hull T, Strong S, Senagore A, Burgart LJ, Young-Fadok T, Szurszewski JH, Farrugia G. Pan-colonic decrease in interstitial cells of Cajal in patients with slow transit constipation. Gut 2002; 51(4):496-501; PMID:12235070; http://dx.doi.org/10.1136/gut.51.4.496
  • Wedel T, Spiegler J, Soellner S, Roblick UJ, Schiedeck TH, Bruch H-P, Krammer HJ. Enteric nerves and interstitial cells of Cajal are altered in patients with slow-transit constipation and megacolon. Gastroenterol 2002; 123(5):1459-67; PMID:12404220; http://dx.doi.org/10.1053/gast.2002.36600

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.