1,641
Views
5
CrossRef citations to date
0
Altmetric
Review

Factors and molecules that could impact cell differentiation in the embryo generated by nuclear transfer

&
Pages 156-178 | Received 23 Feb 2017, Accepted 03 Oct 2017, Published online: 02 Nov 2017

REFERENCES

  • Bromhall JD. Nuclear transplantation in the rabbit egg. Nature. 1975;258:719–22. doi:10.1038/258719a0. PMID:1207752.
  • De Robertis EM, Gurdon JB. Gene activation in somatic nuclei after injection into amphibian oocytes. Proc Natl Acad Sci U S A. 1977;74:2470–4. doi:10.1073/pnas.74.6.2470. PMID:267940.
  • Hochedlinger K, Jaenisch R. Nuclear reprogramming and pluripotency. Nature. 2006;441:1061–7. doi:10.1038/nature04955. PMID:16810240.
  • Gurdon JB, Wilmut I. Nuclear transfer to eggs and oocytes. Cold Spring Harbor Perspect Biol. 2011;3:1–14. doi:10.1101/cshperspect.a002659.
  • Kikyo N, Wolffe AP. Reprogramming nuclei: insights from cloning, nuclear transfer and heterokaryons. J Cell Sci. 2000;113(Pt 1):11–20. PMID:10591621.
  • Santos AR Jr, Nascimento VA, Genari SC, Lombello CB. Mechanisms of cell regeneration — From differentiation to maintenance of cell phenotype. In: Cell and Biomaterials in Regenerative Medicine; 2014. p. 37–69.
  • Tsunoda Y, Kato Y. Recent progress and problems in animal cloning. Differentiation. 2002;69:158–61. doi:10.1046/j.1432-0436.2002.690405.x. PMID:11841470.
  • Yang X, Smith SL, Tian XC, Lewin HA, Renard JP, Wakayama T. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Genet. 2007;39:295–303. doi:10.1038/ng1973. PMID:17325680.
  • Gurdon JB, Byrne JA, Simonsson S. Nuclear reprogramming and stem cell creation. Proc Natl Acad Sci U S A. 2003;100(Suppl):11819–22. doi:10.1073/pnas.1834207100. PMID:12920185.
  • Santos F, Wendy D. Epigenetic reprogramming during early development in mammals. Reproduction. 2004;127:643–51. doi:10.1530/rep.1.00221. PMID:15175501.
  • Bird A. DNA methylation patterns and epigenetic memory. Gene Dev. 2002;16:6–21. doi:10.1101/gad.947102.
  • Morgan HD, Santos F, Green K, Dean W, Reik W. Epigenetic reprogramming in mammals. Hum Mol Genet. 2005;14(Review Issue 1):R47–58. doi:10.1093/hmg/ddi114. PMID:15809273.
  • Meissner A, Jaenisch R. Mammalian nuclear transfer. Dev Dyn. 2006;235:2460–9. doi:10.1002/dvdy.20915. PMID:16881069.
  • Wilmut I, Bai Y, Taylor J. Somatic cell nuclear transfer: origins, the present position and future opportunities. Philos Trans R Soc Lond B Biol Sci. 2015;370:2014366. doi:10.1098/rstb.2014.0366.
  • Wakayama T. Production of cloned mice and ES cells from adult somatic cells by nuclear transfer: how to improve cloning efficiency? J Reprod Dev. 2007;53:13–26. doi:10.1262/jrd.18120. PMID:17332696.
  • Kocabas AM, Crosby J, Ross PJ, Otu HH, Beyhan Z, Can H, Tam WL, Rosa GJM, Halgren RG, Lim B, et al. The transcriptome of human oocytes. Proc Natl Acad Sci U S A. 2006;103:14027–32. doi:10.1073/pnas.0603227103. PMID:16968779.
  • Bermúdez MG, Wells D, Malter H, Munné S, Cohen J, Steuerwald NM. Expression profiles of individual human oocytes using microarray technology. Reprod Biomed Online. 2004;8:325–37. doi:10.1016/S1472-6483(10)60913-3. PMID:15038899.
  • Dobson AT, Raja R, Abeyta MJ, Taylor T, Shen S, Haqq C, Reijo Pera RA. The unique transcriptome through day 3 of human preimplantation development. Hum Mol Genet. 2004;13:1461–70. doi:10.1093/hmg/ddh157. PMID:15150160.
  • Li SSL, Liu YH, Tseng CN, Singh S. Analysis of gene expression in single human oocytes and preimplantation embryos. Biochem Biophys Res Commun. 2006;340:48–53. doi:10.1016/j.bbrc.2005.11.149. PMID:16343430.
  • Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol. 2001;11:1553–8. doi:10.1016/S0960-9822(01)00459-6. PMID:11591326.
  • Byrne JA, Simonsson S, Western PS, Gurdon JB. Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes. Curr Biol. 2003;13:1206–13. doi:10.1016/S0960-9822(03)00462-7. PMID:12867031.
  • Cowan CA, Atienza J, Melton DA, Eggan K. Nuclear Reprogramming of Somatic Cells After Fusion with Human Embryonic Stem. Science. 2005;309:1369–73. doi:10.1126/science.1116447. PMID:16123299.
  • Adona PR, Leal CLV, Biase FH, De Bem TH, Mesquita LG, Meirelles FV, Ferraz AL, Furlan LR, Monzani PS, Guemra S. In vitro maturation alters gene expression in bovine oocytes. Zygote. 2016;24:624–33. doi:10.1017/S0967199415000672. PMID:26885679.
  • Hosseini SM, Moulavi F, Asgari V, Shirazi A, Abazari-Kia AH, Ghanaei HR, Nasr-Esfahani MH. Simple, fast, and efficient method of manual oocyte enucleation using a pulled Pasteur pipette. In Vitro Cell Dev Biol Anim. 2013;49:569–75. doi:10.1007/s11626-013-9630-4. PMID:23824953.
  • Markoulaki S, Meissner A, Jaenisch R. Somatic cell nuclear transfer and derivation of embryonic stem cells in the mouse. Methods. 2008;45:101–14. doi:10.1016/j.ymeth.2008.04.002. PMID:18593608.
  • Li GP, White KL, Bunch TD. Review of enucleation methods and procedures used in animal cloning: state of the art. Cloning Stem Cells. 2004;6:5–13. doi:10.1089/15362300460743781. PMID:15107241.
  • Gao S, Gasparrini B, McGarry M, Ferrier T, Fletcher J, Harkness L, De Sousa P, Wilmut I. Germinal vesicle material is essential for nucleus remodeling after nuclear transfer. Bio Reprod. 2002;67:928–34. doi:10.1095/biolreprod.102.004606. PMID:12193404.
  • Mullins LJ, Wilmut I, Mullins JJ. Nuclear transfer in rodents. J Physiol. 2004;554:4–12. doi:10.1113/jphysiol.2003.049742. PMID:14678485.
  • Dominko T, Chan A, Simerly C, Luetjens CM, Hewitson L, Martinovich C, Schatten G. Dynamic imaging of the metaphase II spindle and maternal chromosomes in bovine oocytes: implications for enucleation efficiency verification, avoidance of parthenogenesis, and successful embryogenesis. Biol Reprod. 2000;62:150–4. doi:10.1095/biolreprod62.1.150. PMID:10611079.
  • Meng L, Rutledge J, Zhu Y, Kidder GM, Khamsi F, Armstrong DT. Role of germinal vesicle on protein synthesis in rat oocyte during in vitro maturation. Mol Reprod Dev. 1996;43:228–35. doi:10.1002/(SICI)1098-2795(199602)43:2%3c228::AID-MRD12%3e3.0.CO;2-. PMID:8824921.
  • Kubota C, Yang X, Dinnyes A, Todoroki J, Yamakuchi H, Mizoshita K, Inohae S, Tabara N. In vitro and in vivo survival of frozen-thawed bovine oocytes after IVF, nuclear transfer, and parthenogenetic activation. Mol Reprod Dev. 1998;51:281–6. doi:10.1002/(SICI)1098-2795(199811)51:3%3c281::AID-MRD7%3e3.0.CO;2-L. PMID:9771648.
  • Dinnyes A, Dai Y, Jiang S, Yang X. High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Biol Reprod. 2000;63:513–8. doi:10.1095/biolreprod63.2.513. PMID:10906058.
  • Li G, Chen D, Lian LI, Sun Q, Wang M, Liu J, Li JS, Zhi-Ming H. Viable Rabbits Derived From Reconstructed oocytes by germinal vesicle transfer after intracytoplasmic sperm injection (ICSI). Mol Reprod Dev. 2001;58:180–5. doi:10.1002/1098-2795(200102)58:2%3c180::AID-MRD7%3e3.0.CO;2-7. PMID:11139230.
  • Campbell KH, McWhir J, Ritchie WA, Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line. Nature. 1996;380:64–6. doi:10.1038/380064a0. PMID:8598906.
  • Bordignon V, Smith LC. Telophase enucleation: An improved method to prepare recipient cytoplasts for use in bovine nuclear transfer. Mol Reprod Dev. 1998;49:29–36. doi:10.1002/(SICI)1098-2795(199801)49:1%3c29::AID-MRD4%3e3.0.CO;2-Q. PMID:9406193.
  • Liu JL, Sung LY, Barber M, Yang XZ. Hypertonic medium treatment for localization of nuclear material in bovine metaphase II oocytes. Biol Reprod. 2002;66:1342–9. doi:10.1095/biolreprod66.5.1342. PMID:11967196.
  • Fulka J Jr, Moor RM. Noninvasive chemical enucleation of mouse oocytes. Mol Reprod Dev. 1993;34:427–30. doi:10.1002/mrd.1080340412. PMID:8471262.
  • Ibánez E, Albertini DF, Overström EW. Demecolcine-Induced Oocyte Enucleation for Somatic Cell Cloning: Coordination Between Cell-Cycle Egress, Kinetics of Cortical Cytoskeletal Interactions, and Second Polar Body Extrusion. Biol Reprod. 2003;68:1249–58. doi:10.1095/biolreprod.102.008292. PMID:12606412.
  • Fulka J, Loi P, Fulka H, Ptak G, Nagai T. Nucleus transfer in mammals: Noninvasive approaches for the preparation of cytoplasts. Trends Biotechnol. 2004;22:279–83. doi:10.1016/j.tibtech.2004.04.002. PMID:15158056.
  • Wang MK, Liu JL, Li GP, Lian L, Chen DY. Sucrose pretreatment for enucleation: An efficient and non-damage method for removing the spindle of the mouse MII oocyte. Mol Reprod Dev. 2001;58:432–6. doi:10.1002/1098-2795(20010401)58:4%3c432::AID-MRD11%3e3.0.CO;2-Y. PMID:11241780.
  • Liu L, Oldenbourg R, Trimarchi JR, Keefe DL. A reliable, noninvasive technique for spindle imaging and enucleation of mammalian oocytes. Nat Biotechnol. 2000;18:223–5. doi:10.1038/72692. PMID:10657133.
  • Liu JL, Wang MK, Sun QY, Xu Z, Chen DY. Effect of telophase enucleation on bovine somatic nuclear transfer. Theriogenology. 2000;54:989–98. doi:10.1016/S0093-691X(00)00407-6. PMID:11097050.
  • Vajta G, Lewis IM, Poul H, Thouas GA, Trounson AO. Somatic cell cloning without micromanipulators. Cloning. 2001;3:89–95. doi:10.1089/15204550152475590. PMID:11900643.
  • Rodríguez L, Navarrete FI, Tovar H, Cox JF, Castro FO. High developmental potential in vitro and in vivo of cattle embryos cloned without micromanipulators. J Assist Reprod Genet. 2008;25:13–6. doi:10.1007/s10815-007-9194-x. PMID:18205035.
  • Tatham BG, Sathananthan AH, Dharmawardena V, Munesinghe DY, Lewis I, Trounson AO. Centrifugation of bovine oocytes for nuclear micromanipulation and sperm microinjection. Hum Reprod (Oxford, England). 1996;11:1499–503. doi:10.1093/oxfordjournals.humrep.a019425. PMID:8671492.
  • Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature. 1998;394:369–74. doi:10.1038/28615. PMID:9690471.
  • Kato Y, Tani T, Tsunoda Y. Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows. J Reprod Fertil. 2000;120:231–7. PMID:11058438.
  • Alberio R, Campbell KH, Johnson AD. Reprogramming somatic cells into stem cells. Reproduction. 2006;132:709–20. doi:10.1530/rep.1.01077. PMID:17071772.
  • Ogura A, Inoue K, Takano K, Wakayama T, Yanagimachi R. Birth of mice after nuclear transfer by electrofusion using tail tip cells. Mol Reprod Dev. 2000;57:55–9. doi:10.1002/1098-2795(200009)57:1%3c55::AID-MRD8%3e3.0.CO;2-W. PMID:10954856.
  • Eggan K, Akutsu H, Loring J, Jackson-Grusby L, Klemm M, Rideout WM, Yanagimachi R, Jaenisch R. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci U S A. 2001;98:6209–14. doi:10.1073/pnas.101118898. PMID:11331774.
  • Egli D, Rosains J, Birkhoff G, Eggan K. Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature. 2007;447:679–85. doi:10.1038/nature05879. PMID:17554301.
  • Wakayama T, Rodriguez I, Perry AC, Yanagimachi R, Mombaerts P. Mice cloned from embryonic stem cells. Proc Natl Acad Sci U S A. 1999;96:14984–9. doi:10.1073/pnas.96.26.14984. PMID:10611324.
  • Amano T, Tani T, Kato Y, Tsunoda Y. Mouse cloned from embryonic stem (ES) cells synchronized in metaphase with nocodazole. J Exp Zool. 2001;289:139–45. doi:10.1002/1097-010X(20010201)289:2%3c139::AID-JEZ7%3e3.0.CO;2-6. PMID:11169501.
  • Kato Y, Tsunoda Y. Role of the donor nuclei in cloning efficiency: can the ooplasm reprogram any nucleus? Int J Dev Biol. 2010;54:1623–29. doi:10.1387/ijdb.103203yk. PMID:21404183.
  • Ideta A, Urakawa M, Aoyagi Y, Saeki K. Early development in utero of bovine nuclear transfer embryos using early G1 and G0 phase cells. Cloning Stem Cell. 2007;9:571–80. doi:10.1089/clo.2007.0017. PMID:18154517.
  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KHS. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385:810–3. doi:10.1038/385810a0. PMID:9039911.
  • Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol. 2001;17:387–403. doi:10.1146/annurev.cellbio.17.1.387. PMID:11687494.
  • Smith AG. Embryo derived stem cells : Of Mice and Men. Annu Rev Cell Dev Biol. 2001;17:435–62. doi:10.1146/annurev.cellbio.17.1.435. PMID:11687496.
  • Machado L, Santos AR Jr. Stem cells and cell therapy : From basic sciences to clinical perspectives. J Biomed Sci Eng. 2013;2013:683–92. doi:10.4236/jbise.2013.66083.
  • Qi SD, Smith PD, Choong PF. Nuclear reprogramming and induced pluripotent stem cells: a review for surgeons. ANZ J Surg. 2014;84:417–23. doi:10.1111/ans.12419.
  • Tachibana M, Amato P, Sparman M, Gutierrez NM, Ma H, Kang E, Fulati A, Lee H, Masterson K, Larson J, et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 2013;153:1228–38. doi:10.1016/j.cell.2013.05.006. PMID:23683578.
  • Zhou Q, Jouneau A, Brochard V, Adenot P, Renard JP. Developmental potential of mouse embryos reconstructed from metaphase embryonic stem cell nuclei. Biol Reprod. 2001;65:412–9.
  • Gao S, McGarry M, Ferrier T, Pallante B, Gasparrini B, Fletcher J, Harkness L, De Sousa P, McWhir J, Wilmut I. Effect of Cell Confluence on Production of Cloned Mice Using an Inbred Embryonic Stem Cell Line. Biol Reprod. 2003;68:595–603. doi:10.1095/biolreprod.102.005819. PMID:12533424.
  • Telford NA, Watson AJ, Schultz GA. Transition from maternal to embryonic control in early mammalian development : A comparison of several species. Mol Reprod Dev. 1990;26:90–100. doi:10.1002/mrd.1080260113. PMID:2189447.
  • Kanka J. Gene expression and chromatin structure in the pre-implantation embryo. Theriogenology. 2003;59:3–19. doi:10.1016/S0093-691X(02)01267-0. PMID:12499014.
  • Brambrink T, Hochedlinger K, Bell G, Jaenisch R. ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc Natl Acad Sci U S A. 2006;103:933–8. doi:10.1073/pnas.0510485103. PMID:16418286.
  • Smith LC, Suzuki J Jr, Goff AK, Filion F, Therrien J, Murphy BD, Kohan-Ghadr HR, Lefebvre R, Brisville AC, Buczinski S, Fecteau G, et al. Developmental and epigenetic anomalies in cloned cattle. Reprod Domest Anim. 2012;47:107–14. doi:10.1111/j.1439-0531.2012.02063.x. PMID:22827358.
  • Watanabe S. Effect of calf death loss on cloned cattle herd derived from somatic cell nuclear transfer: clones with congenital defects would be removed by the death loss. Anim Sci J. 2013;84:631–38. doi:10.1111/asj.12087. PMID:23829575.
  • Loi P, Iuso D, Czernik M, Ogura A. A new, dynamic era for somatic cell nuclear transfer? Trends Biotechnol. 2016;34:791–97. doi:10.1016/j.tibtech.2016.03.008. PMID:27118511.
  • Duan L, Wang Z, Shen J, Shan Z, Shen X, Wu Y, Sun R, Li T, Yuan R, Zhao Q, et al. Comparison of reprogramming genes in induced pluripotent stem cells and nuclear transfer cloned embryos. Stem Cell Rev Rep. 2014;10:548–60. doi:10.1007/s12015-014-9516-1. PMID:24828831.
  • Dalbies-Tran R. Use of heterologous complementary DNA array screening to analyze bovine oocyte transcriptome and its evolution during in vitro maturation. Biol Reprod. 2003;68:252–61. doi:10.1095/biolreprod.102.007872. PMID:12493721.
  • Qiu JJ, Zhang WW, Wu ZL, Wang YH, Qian M, Li YP. Delay of ZGA initiation occurred in 2-cell blocked mouse embryos. Cell Res. 2003;13:179–85. doi:10.1038/sj.cr.7290162. PMID:12862318.
  • Chen T, Zang Y, Jiang Y, Liu J, Schatten H, Chen D, Sun Q. Interspecies nuclear transfer reveals that demethylation of specific repetitive sequences is determined by recipient ooplasm by not by donor intrinsic property in cloned embryos. Mol Reprod Dev. 2006;73:313–17. doi:10.1002/mrd.20421. PMID:16362970.
  • Lagutina I, Fulka H, Lazzari G, Galli C. Interspecies somatic cell nuclear transfer: advancements and problems. Cell Reprogram. 2013;15:374–84. doi:10.1089/cell.2013.0036. PMID:24033141.
  • Cibelli JB, Kocabas AM, Beyhan Z, Ross PJ. Cellular reprogramming for the creation of patient-specific embryonic stem cells. Stem Cell Rev. 2006;2:289–95. doi:10.1007/BF02698055. PMID:17848715.
  • Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95:379–91. doi:10.1016/S0092-8674(00)81769-9. PMID:9814708.
  • Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003;113:643–55. doi:10.1016/S0092-8674(03)00392-1. PMID:12787505.
  • Han F, Li X, Song D, Jiang S, Xu Q, Zhang Y. SCNT versus iPSCs: proteins and small molecules in reprogramming. Int J Dev Biol. 2015;59:179–86. doi:10.1387/ijdb.150042fh. PMID:26505250.
  • Li X, Zhang P, Wei C, Zhang Y. Generation of pluripotent stem cells via protein transduction. Int J Dev Biol. 2014;58:21–27. doi:10.1387/ijdb.140007XL. PMID:24860991.
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76. doi:10.1016/j.cell.2006.07.024. PMID:16904174.
  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72. doi:10.1016/j.cell.2007.11.019. PMID:18035408.
  • Kang L, Kou Z, Zhang Y, Gao S. Induced pluripotent stem cells (iPSCs)-a new era of reprogramming. J Genet Genomics. 2010;37:415–21. doi:10.1016/S1673-8527(09)60060-6. PMID:20659705.
  • Teng HF, Kuo YL, Loo MR, Li CL, Chu TW, Suo H, Liu HS, Lin KH, Chen SL. Valproic acid enhances Oct4 promoter activity in myogenic cells. J Cell Biochem. 2010;110:995–1004. doi:10.1002/jcb.22613. PMID:20564199.
  • David L, Polo JM. Phases of reprogramming. Stem Cell Res. 2014;12:754–61. doi:10.1016/j.scr.2014.03.007. PMID:24735951.
  • Niemann H. Epigenetic reprogramming in mammalian species after SCNT-based cloning. Theriogenology. 2016;86:80–90. doi:10.1016/j.theriogenology.2016.04.021. PMID:27160443.
  • Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E, Reik W. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci U S A. 2001;98:13734–38. doi:10.1073/pnas.241522698. PMID:11717434.
  • Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293:1089–93. doi:10.1126/science.1063443. PMID:11498579.
  • Dinnyes A, Tian XC, Yang X. Epigenetic regulation of foetal development in nuclear transfer animal models. Reprod Domest Anim. 2008;43:302–09. doi:10.1111/j.1439-0531.2008.01178.x. PMID:18638139.
  • Urrego R, Rodriguez-Osorio N, Niemann H. Epigenetic disorders and altered gene expression after use of assisted reproductive technologies in domestic cattle. Epigenetics. 2014;9:803–15. doi:10.4161/epi.28711. PMID:24709985.
  • Kungulovski G, Jeltsch A. Epigenome editing: state of the art, concepts, and perspectives. Trends Genet. 2016;32:101–13. doi:10.1016/j.tig.2015.12.001. PMID:26732754.
  • Sepulveda-Rincon L, Solanas EL, Serrano-Revuelta E, Ruddick L, Maalouf WE, Beaujean N. Early epigenetic reprogramming in fertilized, cloned, and parthenogenetic embryos. Theriogenology. 2016;86:91–98. doi:10.1016/j.theriogenology.2016.04.022. PMID:27156679.
  • Golbabapour S, Abdulla MA, Hajrezaei M. A concise review on epigenetic regulation: insight into molecular mechanisms. Int J Mol Sci. 2011;12:8661–94. doi:10.3390/ijms12128661. PMID:22272098.
  • Triantaphyllopoulos K, Ikonomopoulos I, Bannister AJ. Epigenetics and inheritance of phenotype variation in livestock. Epigenetics Chromatin. 2016;9:31. doi:10.1186/s13072-016-0081-5.
  • Reik W, Santos F, Mitsuya K, Morgan H, Dean W. Epigenetic asymmetry in the mammalian zygote and early embryo: relationship to lineage commitment? Philos Trans R Soc Lond B Biol Sci. 2003;358:1403–09. doi:10.1098/rstb.2003.1326.
  • Eilertsen KJ, Power RA, Harkins LL, Misica P. Targeting cellular memory to reprogram the epigenome, restore potential, and improve somatic cell nuclear transfer. Anim Reprod Sci. 2007;98:129–46. doi:10.1016/j.anireprosci.2006.10.019. PMID:17166676.
  • Zhao J, Whyte J, Prather RS. Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer. Cell Tissue Res. 2010;341:13–21. doi:10.1007/s00441-010-1000-x. PMID:20563602.
  • Leung A, Schones DE, Natarajan R. Using epigenetic mechanisms to understand the impact of common disease causing alleles. Curr Opin Immunol. 2012;24:558–63. doi:10.1016/j.coi.2012.07.004. PMID:22857822.
  • Niemann H, Tian XC, King WA, Lee RSF. Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction. 2008;135:151–63. doi:10.1530/REP-07-0397. PMID:18239046.
  • Hochedlinger K, Jaenisch R. Nuclear transplantation, embryonic stem cells and the potential for cell therapy. N Eng J Med. 2003;349:275–86. doi:10.1056/NEJMra035397. PMID:12867612.
  • Han YM, Kang YK, Koo DB, Lee KK. Nuclear reprogramming of cloned embryos produced in vitro. Theriogenology. 2003;59:33–44. doi:10.1016/S0093-691X(02)01271-2. PMID:12499016.
  • Dean W, Santos F, Reik W. Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer. Semin Cell Dev Biol. 2003;14:93–100. doi:10.1016/S1084-9521(02)00141-6.
  • Bestor TH. Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J. 1992;11:2611–7. PMID:1628623.
  • Hsieh CL. In vivo activity of murine de novo methyltransferases, Dnmt3a and Dnmt3b. Mol Cell Biol. 1999;19:8211–8. doi:10.1128/MCB.19.12.8211. PMID:10567546.
  • Bourc'his D, Xu GL, Lin CS, Bollman B, Bestor TH. Dnmt3L and the establishment of maternal genomic imprints. Science. 2001;294:2536–9. doi:10.1126/science.1065848. PMID:11719692.
  • Bourc´his D, Bouhis DL, Patin D, Niveleau A, Comizzoli P, Renard JP, Viegas-Péquignot E. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr Biol. 2001;11:1542–46. doi:10.1016/S0960-9822(01)00480-8. PMID:11591324.
  • Kang YK, Koo DB, Park JS, Choi YH, Chung AS, Lee KK, Han YM. Aberrant methylation of donor genome in cloned bovine embryos. Nat Genet. 2001;28:173–7. doi:10.1038/88903. PMID:11381267.
  • Kang YK, Koo DB, Park JS, Choi YH, Kim HN, Chang WK, Lee KK, Han YM. Typical demethylation events in cloned pig embryos: Clues on species-specific differences in epigenetic reprogramming of a cloned donor genome. J Biol Chem. 2001;276:39980–4. doi:10.1074/jbc.M106516200. PMID:11524426.
  • Santos F, Zakhartchenko V, Stojkovic M, Peters A, Jenuwein T, Wolf E, Reik W, Dean W. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr Biol. 2003;13:1116–21. doi:10.1016/S0960-9822(03)00419-6. PMID:12842010.
  • Kimmins S, Sassone-Corsi P. Chromatin remodelling and epigenetic features of germ cells. Nature. 2005;434:583–89. doi:10.1038/nature03368. PMID:15800613.
  • Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705. doi:10.1016/j.cell.2007.02.005. PMID:17320507.
  • Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites. Cell. 2002;111:185–96. doi:10.1016/S0092-8674(02)00975-3. PMID:12408863.
  • Kirmizis A, Bartley SM, Kuzmichev A, Margueron R, Reinberg D, Green R, Farnham PJ. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev. 2004;18:1592–605. doi:10.1101/gad.1200204.
  • Keefer CL. Artificial cloning of domestic animals. Proc Natl Acad Sci. 2015;112:8874–8. doi:10.1073/pnas.1501718112.
  • Enright BP, Sung LY, Chang CC, Yang X, Tian XC. Methylation and Acetylation Characteristics of Cloned Bovine Embryos from Donor Cells Treated with 5-aza-2′-Deoxycytidine. Biol Reprod. 2005;72:944–8. doi:10.1095/biolreprod.104.033225. PMID:15601924.
  • Huan YJ, Zhu J, Xie BT, Wang JY, Liu SC, Zhou Y, Kong QR, He HB, Liu ZH. Treating cloned embryos, but not donor cells, with 5-aza-2´-deoxycytidine enhances the developmental competence of porcine cloned embryos. J Reprod Dev. 2013;59:442–49. doi:10.1262/jrd.2013-026. PMID:23748715.
  • Jeong YIK, Park CH, Kim SH, Jeong YW, Lee JY, Woo PS, Lee SY, Hyun SH, Kim YW, Shin T, et al. Effects of trichostatin A on in vitro development of porcine embryos derived from somatic cell nuclear transfer. Asian-Australas J Anim Sci. 2013;26:1680–8. doi:10.5713/ajas.2013.13029. PMID:25049758.
  • Bortvin A, Eggan K, Skaletsky H, Akutsu H, Berry DL, Yanagimachi R, Page DC, Jaenisch R. Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development. 2003;130:1673–80. doi:10.1242/dev.00366. PMID:12620990.
  • Hai T, Hao J, Wang L, Jouneau A, Zhou Q. Pluripotency maintenance in mouse somatic cell nuclear transfer embryos and its improvement by treatment with the histones deacetylase inhibitor TSA. Cell Reprogram. 2011;13:47–56. doi:10.1089/cell.2010.0042. PMID:21241188.
  • Wang Y, Su J, Wang L, Xu W, Quan F, Liu J, Zhang Y. The effects of 5-aza-2′- deoxycytidine and trichostatin A on gene expression and DNA methylation status in cloned bovine blastocysts. Cell Reprogram. 2011;13:297–306. doi:10.1089/cell.2010.0098. PMID:21486115.
  • Iager AE, Ragina NP, Ross PJ, Beyhan Z, Cunniff K, Rodriguez RM, Cibelli JB. Trichostatin A improves histone acetylation in bovine somatic cell nuclear transfer early embryos. Cloning Stem Cell. 2008;10:371–79. doi:10.1089/clo.2007.0002. PMID:18419249.
  • Thuan NV, Bui HT, Kim JH, Hikichi T, Wakayama S, Kishigami S, Mizutani E, Wakayama T. The histone deacetylase inhibitor scriptaid enhances nascent mRNA production and rescues full-term development in cloned inbred mice. Reproduction. 2009;138:309–17. doi:10.1530/REP-08-0299. PMID:19433501.
  • Bui HT, Wakayama S, Kishigami S, Park KK, Kim JH, Thuan NV, Wakayama T. Effect of trichostatin A on chromatin remodeling, histone modifications, DNA replication, and transcriptional activity in cloned mouse embryos. Biol Reprod. 2010;83:454–63. doi:10.1095/biolreprod.109.083337. PMID:20505166.
  • Xu W, Li Z, Yu B, He X, Shi J, Zhou R, Kiu D, Wu Z. Effects of DNMT1 and HDAC inhibitors on gene-specific methylation reprogramming during porcine somatic cell nuclear transfer. PLoS One. 2013;8:e64705. doi:10.1371/journal.pone.0064705.
  • Hou L, Ma F, Yang J, Riaz H, Wang Y, Wu W, Xia X, Ma Z, Zhou Y, Zhang L, et al. Effect of histones deacetylase inhibitor oxamflatin on in vitro porcine somatic cell nuclear transfer embryos. Cell Reprogram. 2014;16:253–65. doi:10.1089/cell.2013.0058. PMID:24960409.
  • Huang Y, Tang X, Xie W, Zhou Y, Li D, Yao C, Zhou Y, Zhu J, Lai L, Ouyang H, et al. Histone deacetylase inhibitor significantly improved the cloning efficiency of porcine somatic cell nuclear transfer embryos. Cell Reprogram. 2011;13:513–20. PMID:22029418.
  • Xu W, Wang Y, Li Y, Wang L, Xiong X, Su J, Zhang Y. Valporic acid improves the in vitro development competence of bovine somatic cell nuclear transfer embryos. Cell Reprogram. 2012;14:138–45. PMID:22372575.
  • Sangalli JR, Chiaratti MR, De Bem THC, de Araújo RR, Bressan FF, Sampaio RV, Perecin F, Smith LC, King WA, Meirelles FV. Development to term of cloned cattle derived from donor cells treated with valporic acid. PLoS One. 2014;9:e101022. doi:10.1371/journal.pone.0101022.
  • Wrenzycki C, Herrmann D, Keskintepe L, Martins A Jr, Sirisathien S, Brackett B, Niemann H. Effect of culture system and protein supplementation on mRNA expression in pre-implantation bovine embryos. Hum Reprod. 2001;16:893–901. doi:10.1093/humrep/16.5.893. PMID:11331635.
  • Young LE, Fernandes K, McEvoy TG, Butterwith SC, Gutierrez CG, Carolan C, Broadbent PJ, Robinson JJ, Wilmut I, Sinclair KD. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet. 2001;27:153–54. doi:10.1038/84769. PMID:11175780.
  • Farin PW, Piedrahita JA, Farin CE. Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology. 2006;65:178–91. doi:10.1016/j.theriogenology.2005.09.022. PMID:16266745.
  • Lonergan P, Fair T, Corcoran D, Evans ACO. Effect of culture environment on gene expression and developmental characteristics in IVF-derived embryos. Theriogenology. 2006;65:137–52. doi:10.1016/j.theriogenology.2005.09.028. PMID:16289260.
  • Rizos D, Gutiérrez-Adán A, Pérez-Garnelo S, De la Fuente J, Boland MP, Lonergan P. Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol Reprod. 2003;68:236–43. doi:10.1095/biolreprod.102.007799. PMID:12493719.
  • Rizos D, Lonergan P, Boland MP, Arroyo-García R, Pintado B, De la Fuente J, Gutiérrez-Adán A. Analysis of differential messenger RNA expression between bovine blastocysts produced in different culture systems: Implications for blastocyst quality. Biol Reprod. 2002;66:589–95. doi:10.1095/biolreprod66.3.589. PMID:11870062.
  • Farin CE, Farin PW, Piedrahita JA. Development of fetuses from in vitro-produced and cloned bovine embryos. J Anim Sci. 2004;82:E53–62. PMID:15471815.
  • Lee K, Redel BK, Spate LEE, Teson J, Brown AN, Park K, Walters E, Samuel M, Murphy CN, Prather RS. Piglets produced from cloned blastocysts cultured in vitro with GM-CSF. Mol Reprod Dev. 2013;80:145–54. doi:10.1002/mrd.22143. PMID:23239239.
  • Chesné P, Adenot PG, Viglietta C, Baratte M, Boulanger L, Renard JP. Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Biotechnol. 2002;20:366–69. doi:10.1038/nbt0402-366. PMID:11923842.
  • Hansen PJ, Dobbs KB, Denicol AC, Siqueira LGB. Sex and the preimplantation embryo: implications of sexual dimorphism in the preimplantation period for maternal programming of embryonic development. Cell Tissue Res. 2016;363:237–47. doi:10.1007/s00441-015-2287-4. PMID:26391275.
  • Serrano A, Decara JM, Fernández-Gonzalez R, Lopez-Cardona AP, Pavón FJ, Orio L, Alen F, Gutierrez-Adan A, de Fonseca FR. Hyperplastic Obesity and Liver Steatosis as Long-Term Consequences of Suboptimal In Vitro Culture of Mouse Embryos. Biol Reprod. 2014;91:1–14. doi:10.1095/biolreprod.114.117879.
  • Sjöblom C, Roberts CT, Wikland M, Robertson SA. Granulocyte-macrophage colony-stimulating factor alleviates adverse consequences of embryo culture on fetal growth trajectory and placental morphogenesis. Endocrinology. 2005;146:2142–53. doi:10.1210/en.2004-1260. PMID:15705781.
  • Loureiro B, Bonilla L, Block J, Fear JM, Bonilla AQS, Hansen PJ. Colony-stimulating factor 2 (CSF-2) improves development and posttransfer survival of bovine embryos produced in vitro. Endocrinology. 2009;150:5046–54. doi:10.1210/en.2009-0481. PMID:19797121.
  • Block J, Hansen PJ, Loureiro B, Bonilla L. Improving post-transfer survival of bovine embryos produced in vitro: Actions of insulin-like growth factor-1, colony stimulating factor-2 and hyaluronan. Theriogenology. 2011;76:1602–9. doi:10.1016/j.theriogenology.2011.07.025. PMID:21890189.
  • Loureiro B, Block J, Favoreto MG, Carambula S, Pennington KA, Ealy AD, Hansen PJ. Consequences of conceptus exposure to colony-stimulating factor 2 on survival, elongation, interferon-Τ secretion, and gene expression. Reproduction. 2011;141:617–24. doi:10.1530/REP-10-0511. PMID:21339286.
  • Banrezes B, Sainte-Beuve T, Canon E, Schultz RM, Cancela J, Ozil JP. Adult body weight is programmed by a redox-regulated and energy-dependent process during the pronuclear stage in mouse. PLoS ONE. 2011;6:1–11. doi:10.1371/journal.pone.0029388.
  • Vajta G, Gjerris M. Science and technology of farm animal cloning: State of the art. Anim Reprod Sci. 2006;92:211–30. doi:10.1016/j.anireprosci.2005.12.001. PMID:16406426.
  • McEvoy TG, Robinson JJ, Ashworth CJ, Rooke JA, Sinclair KD. Feed and forage toxicants affecting embryo survival and fetal development. Theriogenology. 2001;55:113–29. doi:10.1016/S0093-691X(00)00450-7. PMID:11198077.
  • McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev. 2005;85:571–633. doi:10.1152/physrev.00053.2003. PMID:15788706.
  • Hill JR, Roussel AJ, Cibelli JB, Edwards JF, Hooper NL, Miller MW, Thompson JA, Looney CR, Westhusin ME, Robl JM, et al. Clinical and pathologic features of cloned transgenic calves and fetuses (13 case studies). Theriogenology. 1999;51:1451–65. doi:10.1016/S0093-691X(99)00089-8. PMID:10729073.
  • Wells DN, Misica PM, Tervit HR. Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biol Reprod. 1999;60:996–1005. doi:10.1095/biolreprod60.4.996. PMID:10084977.
  • Koo DB, Kang YK, Choi YH, Park JS, Kim HN, Oh KB, Son DS, Park H, Lee KK, Han YM. Aberrant allocations of inner cell mass and trophectoderm cells in bovine nuclear transfer blastocysts. Biol Reprod. 2002;67:487–92. doi:10.1095/biolreprod67.2.487. PMID:12135886.
  • Lanza RP, Cibelli JB, Blackwell C, Cristofalo VJ, Francis MK, Baerlocher GM, Mak J, Schertzer M, Chavez EA, Sawyer N, et al. Extension of Cell Life-Span and Telomere Length in Animals Cloned from Senescent Somatic Cells. Science. 2000;288:665–9. doi:10.1126/science.288.5466.665. PMID:10784448.
  • Chavatte-Palmer P, Heyman Y, Richard C, Monget P, LeBourhis D, Kann G, Chilliard Y, Vignon X, Renard JP. Clinical, hormonal, and hematologic characteristics of bovine calves derived from nuclei from somatic cells. Biol Reprod. 2002;66:1596–603. doi:10.1095/biolreprod66.6.1596. PMID:12021036.
  • Chavatte-Palmer P, Remy D, Cordonnier N, Richard C, Issenman H, Laigre P, Heyman Y, Mialot JP. Health status of cloned cattle at different ages. Cloning Stem Cell. 2004;6:94–100. doi:10.1089/1536230041372274. PMID:15268782.
  • Sado T, Sakaguchi T. Species-specific differences in X chromosome inactivation in mammals. Reproduction. 2013;146:R131–9. doi:10.1530/REP-13-0173. PMID:23847260.
  • Oikawa M, Inoue K, Shiura H, Matoba S, Kamimura S, Hirose M, Mekada K, Yoshiki A, Tanaka S, Abe K, et al. Understanding the X chromosome inactivation cycle in mice. Epigenetics. 2014;9:204–11. doi:10.4161/epi.26939. PMID:24172050.
  • Inoue K, Kohda T, Sugimoto M, Sado T, Ogonuki N, Matoba S, Shiura H, Ikeda R, Mochida K, Fujii T, Sawai K, et al. Impeding Xist Expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science. 2010;330:496–9. doi:10.1126/science.1194174. PMID:20847234.
  • Matoba S, Inoue K, Kohda T, Sugimoto M, Mizutani E, Ogonuki N, Nakamura T, Abe K, Nakano T, Ishino F, et al. RNAi-mediated knockdown of Xist can rescue the impaired postimplantation development of cloned mouse embryos. Proc Natl Acad Sci U S A. 2011;108:20621–6. doi:10.1073/pnas.1112664108. PMID:22065773.
  • Jiang L, Jobst P, Lai L, Samuel M, Prather RS, Ayares D, Yang X, Tian XC. Expression of X-linked genes in deceased neonates and surviving cloned female piglets. Mol Reprod Dev. 2008;75:265–73. doi:10.1002/mrd.20758. PMID:17474099.
  • Park CH, Jeong YH, Jeong YI, Lee SY, Jeong YW, Shin T, Kim NH, Jeung EB, Hyun SH, Lee CK, et al. X-Linked gene transcription patterns in female and male in vivo, in vitro and cloned porcine individual blastocysts. PLoS ONE. 2012;7:1–12. doi:10.1371/journal.pone.0051398.
  • Yuan L, Wang A, Yao C, Huang Y, Duan F, Lv Q, Wang D, Ouyang H, Li Z, Lai L. Aberrant expression of xist in aborted porcine fetuses derived from somatic cell nuclear transfer embryos. Int J Mol Sci. 2014;15:21631–43. doi:10.3390/ijms151221631. PMID:25429426.
  • Zeng F, Huang Z, Yuan Y, Shi J, Cai G. Effects of RNAi-mediated knockdown of Xist on the developmental efficiency of cloned male 1 porcine embryos. J Reprod Dev. 2016;62:591–7. doi:10.1262/jrd.2016-095. PMID:27569767.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.