2,218
Views
1
CrossRef citations to date
0
Altmetric
Review

Focusing on Hippo Pathway in Stem Cells of Oral Origin, Enamel Formation and Periodontium Regeneration

ORCID Icon, , & ORCID Icon
Article: 2082236 | Received 28 Feb 2022, Accepted 20 May 2022, Published online: 04 Jul 2022

References

  • Maugeri-Sacca M, De Maria R. The Hippo pathway in normal development and cancer. Pharmacol Ther. 2018;186:60–12. doi:10.1016/j.pharmthera.2017.12.011.
  • Ma S, Meng Z, Chen R, Guan KL. The Hippo pathway: biology and pathophysiology. Annu Rev Biochem. 2019;88(1):577–604. doi:10.1146/annurev-biochem-013118-111829.
  • Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21(21):2747–61. doi:10.1101/gad.1602907.
  • Liu M, Zhao S, Wang XP. YAP overexpression affects tooth morphogenesis and enamel knot patterning. J Dent Res. 2014;93(5):469–74. doi:10.1177/0022034514525784.
  • Kwon HJ, Li L, Jung HS. Hippo pathway/Yap regulates primary enamel knot and dental cusp patterning in tooth morphogenesis. Cell Tissue Res. 2015;362:447–51. doi:10.1007/s00441-015-2267-8.
  • Yang Y, Wang BK, Chang ML, Wan ZQ, Han GL. Cyclic stretch enhances osteogenic differentiation of human periodontal ligament cells via YAP activation. Biomed Res Int. 2018;2018:2174824. doi:10.1155/2018/2174824.
  • Sun B, Wen Y, Wu X, Zhang Y, Qiao X, Xu X. Expression pattern of YAP and TAZ during orthodontic tooth movement in rats. J Mol Histol. 2018;49:123–31. doi:10.1007/s10735-017-9752-1.
  • Yang B, Sun H, Song F, Wu Y, Wang J. Yes-associated protein 1 promotes the differentiation and mineralization of cementoblast. J Cell Physiol. 2018;233:2213–24. doi:10.1002/jcp.26089.
  • Liu H, Jiang D, Chi F, Zhao B. The Hippo pathway regulates stem cell proliferation, self-renewal, and differentiation. Protein Cell. 2012;3:291–304. doi:10.1007/s13238-012-2919-3.
  • Tian S, Tian X, Liu Y, Dong F, Wang J, Liu X, Zhang Z, Chen H. Effects of TAZ on human dental pulp stem cell proliferation and migration. Mol Med Rep. 2017;15(6):4326–32. doi:10.3892/mmr.2017.6550.
  • Jia L, Zhang Y, Ji Y, Xiong Y, Zhang W, Wen Y, Xu X. YAP balances the osteogenic and adipogenic differentiation of hPDLSCs in vitro partly through the Wnt/beta-catenin signaling pathway. Biochem Biophys Res Commun. 2019;518(1):154–60. doi:10.1016/j.bbrc.2019.08.024.
  • Zhai Q, Dong Z, Wang W, Li B, Jin Y. Dental stem cell and dental tissue regeneration. Front Med. 2019;13(2):152–59. doi:10.1007/s11684-018-0628-x.
  • Wu S, Huang J, Dong J, Pan D. hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell. 2003;114(4):445–56. doi:10.1016/S0092-8674(03)00549-X.
  • DeRan M, Yang J, Shen CH, Peters EC, Fitamant J, Chan P, Hsieh M, Zhu S, Asara J, Zheng B, et al. Energy stress regulates hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein. Cell Rep. 2014;9(2):495–503. doi:10.1016/j.celrep.2014.09.036.
  • Boggiano JC, Vanderzalm PJ, Fehon RG. Tao-1 phosphorylates Hippo/MST kinases to regulate the Hippo-Salvador-Warts tumor suppressor pathway. Dev Cell. 2011;21(5):888–95. doi:10.1016/j.devcel.2011.08.028.
  • Poon CL, Lin JI, Zhang X, Harvey KF. The sterile 20-like kinase Tao-1 controls tissue growth by regulating the Salvador-Warts-Hippo pathway. Dev Cell. 2011;21(5):896–906. doi:10.1016/j.devcel.2011.09.012.
  • Yin F, Yu J, Zheng Y, Chen Q, Zhang N, Pan D. Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell. 2013;154(6):1342–55. doi:10.1016/j.cell.2013.08.025.
  • Praskova M, Xia F, Avruch J. MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr Biol. 2008;18(5):311–21. doi:10.1016/j.cub.2008.02.006.
  • Callus BA, Verhagen AM, Vaux DL. Association of mammalian sterile twenty kinases, Mst1 and Mst2, with hSalvador via C-terminal coiled-coil domains, leads to its stabilization and phosphorylation. FEBS J. 2006;273(18):4264–76. doi:10.1111/j.1742-4658.2006.05427.x.
  • Hergovich A, Schmitz D, Hemmings BA. The human tumour suppressor LATS1 is activated by human MOB1 at the membrane. Biochem Biophys Res Commun. 2006;345(1):50–58. doi:10.1016/j.bbrc.2006.03.244.
  • Zheng Y, Wang W, Liu B, Deng H, Uster E, Pan D. Identification of Happyhour/MAP4K as alternative Hpo/Mst-like kinases in the Hippo kinase cascade. Dev Cell. 2015;34(6):642–55. doi:10.1016/j.devcel.2015.08.014.
  • Meng Z, Moroishi T, Mottier-Pavie V, Plouffe SW, Hansen CG, Hong AW, Park HW, Mo J-S, Lu W, Lu S, et al. MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat Commun. 2015;6(1):8357. doi:10.1038/ncomms9357.
  • Chan SW, Lim CJ, Guo F, Tan I, Leung T, Hong W. Actin-binding and cell proliferation activities of angiomotin family members are regulated by Hippo pathway-mediated phosphorylation. J Biol Chem. 2013;288(52):37296–307. doi:10.1074/jbc.M113.527598.
  • Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu J, Lin JD, Wang C-Y, Chinnaiyan AM, et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 2008;22(14):1962–71. doi:10.1101/gad.1664408.
  • Nishio M, Miyachi Y, Otani J, Tane S, Omori H, Ueda F, Togashi H, Sasaki T, Mak TW, Nakao K, et al. Hippo pathway controls cell adhesion and context-dependent cell competition to influence skin engraftment efficiency. FASEB J. 2019;33(4):5548–60. doi:10.1096/fj.201802005R.
  • Koo JH, Plouffe SW, Meng Z, Lee DH, Yang D, Lim DS, Wang C-Y, Guan K-L. Induction of AP-1 by YAP/TAZ contributes to cell proliferation and organ growth. Genes Dev. 2020;34(1–2):72–86. doi:10.1101/gad.331546.119.
  • Chen X, Yuan W, Li Y, Luo J, Hou N. Role of Hippo-YAP1/TAZ pathway and its crosstalk in cardiac biology. Int J Biol Sci. 2020;16(13):2454–63. doi:10.7150/ijbs.47142.
  • Yuan Y, Park J, Feng A, Awasthi P, Wang Z, Chen Q, Iglesias-Bartolome R. YAP1/TAZ-TEAD transcriptional networks maintain skin homeostasis by regulating cell proliferation and limiting KLF4 activity. Nat Commun. 2020;11(1):1472. doi:10.1038/s41467-020-15301-0.
  • Ansari D, Ohlsson H, Althini C, Bauden M, Zhou Q, Hu D, Andersson R. The Hippo signaling pathway in pancreatic cancer. Anticancer Res. 2019;39(7):3317–21. doi:10.21873/anticanres.13474.
  • Swidnicka-Siergiejko AK, Gomez-Chou SB, Cruz-Monserrate Z, Deng D, Liu Y, Huang H, Ji B, Azizian N, Daniluk J, Lu W, et al. Chronic inflammation initiates multiple forms of K-Ras-independent mouse pancreatic cancer in the absence of TP53. Oncogene. 2017;36(22):3149–58. doi:10.1038/onc.2016.461.
  • Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. PNAS. 2000;97(25):13625–30. doi:10.1073/pnas.240309797.
  • Zheng L, Zhang L, Chen L, Jiang J, Zhou X, Wang M, Fan Y. Static magnetic field regulates proliferation, migration, differentiation, and YAP/TAZ activation of human dental pulp stem cells. J Tissue Eng Regen Med. 2018;12(10):2029–40. doi:10.1002/term.2737.
  • Du Y, Montoya C, Orrego S, Wei X, Ling J, Lelkes PI, Yang M . Topographic cues of a novel bilayered scaffold modulate dental pulp stem cells differentiation by regulating YAP signalling through cytoskeleton adjustments. Cell Prolif. 2019;52(6):e12676. doi:10.1111/cpr.12676.
  • Baysal E, Zirh EB, Buber E, Jakobsen TK, Zeybek ND. The effect of melatonin on Hippo signaling pathway in dental pulp stem cells. Neurochem Int. 2021;148:105079. doi:10.1016/j.neuint.2021.105079.
  • Tomokiyo A, Wada N, Maeda H. Periodontal ligament stem cells: regenerative potency in periodontium. Stem Cells Dev. 2019;28(15):974–85. doi:10.1089/scd.2019.0031.
  • Jia L, Gu W, Zhang Y, Jiang B, Qiao X, Wen Y. Activated yes-associated protein accelerates cell cycle, inhibits apoptosis, and delays senescence in human periodontal ligament stem cells. Int J Med Sci. 2018;15(11):1241–50. doi:10.7150/ijms.25115.
  • Wen Y, Ji Y, Zhang Y, Jiang B, Tang C, Wang Q, Chen X, Jia L, Gu W, Xu X . Knockdown of yes-associated protein induces the apoptosis while inhibits the proliferation of human periodontal ligament stem cells through crosstalk between Erk and Bcl-2 signaling pathways. Int J Med Sci. 2017;14(12):1231–40. doi:10.7150/ijms.20504.
  • Dong T, Sun X, Jin H. Role of YAP1 gene in proliferation, osteogenic differentiation, and apoptosis of human periodontal ligament stem cells induced by TNF-alpha. J Periodontol. 2021;92(8):1192–200. doi:10.1002/JPER.20-0176.
  • Yang S, Guo L, Su Y, Wen J, Du J, Li X, Liu Y, Feng J, Xie Y, Bai Y, et al. Nitric oxide balances osteoblast and adipocyte lineage differentiation via the JNK/MAPK signaling pathway in periodontal ligament stem cells. Stem Cell Res Ther. 2018;9(1):118. doi:10.1186/s13287-018-0869-2.
  • Lacruz RS, Habelitz S, Wright JT, Paine ML. Dental enamel formation and implications for oral health and disease. Physiol Rev. 2017;97(3):939–93. doi:10.1152/physrev.00030.2016.
  • Nanci A. 2018. Ten Cate’s oral histology development, structure, and function. Ninth (Elsevier), 400:9780323485241.
  • Li L, Kwon HJ, Harada H, Ohshima H, Cho SW, Jung HS. Expression patterns of ABCG2, Bmi-1, Oct-3/4, and Yap in the developing mouse incisor. Gene Expr Patterns. 2011;11(3–4):163–70. doi:10.1016/j.gep.2010.11.001.
  • Zhang B, Sun BY, Ji YW, Zhang YP, Wang XX, Xu X, Wen Y . Expression and localization of Yap and Taz during development of the mandibular first molar in rats. Biotech Histochem. 2017;92(3):212–21. doi:10.1080/10520295.2016.1267799.
  • Deng L, Chen Y, Guo J, Han X, Guo Y. Roles and mechanisms of YAP/TAZ in orthodontic tooth movement. J Cell Physiol. 2021;236(11):7792–800. doi:10.1002/jcp.30388.
  • Wang Y, Hu B, Hu R, Tong X, Zhang M, Xu C, He Z, Zhao Y, Deng H . TAZ contributes to osteogenic differentiation of periodontal ligament cells under tensile stress. J Periodontal Res. 2020;55:152–60. doi:10.1111/jre.12698.
  • MI C, PR G. Development and general structure of the periodontium. Periodontol. 2000;24:9–27. doi:10.1034/j.1600-0757.2000.2240102.x.
  • Delbridge AR, Grabow S, Strasser A, Vaux DL. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat Rev Cancer. 2016;16:99–109. doi:10.1038/nrc.2015.17.
  • Lake D, Correa SA, Muller J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell Mol Life Sci. 2016;73:4397–413. doi:10.1007/s00018-016-2297-8.
  • Deng Z, Jia Y, Liu H, He M, Yang Y, Xiao W, Li Y. RhoA/ROCK pathway: implication in osteoarthritis and therapeutic targets. Am J Transl Res. 2019;11:5324–31.
  • Chen K, Zhang W, Chen J, Li S, Guo G. Rho-associated protein kinase modulates neurite extension by regulating microtubule remodeling and vinculin distribution. Neural Regener Res. 2013;8:3027–35. doi:10.3969/j.1673-5374.2013.32.006.
  • Katagiri T, Watabe T. Bone morphogenetic proteins. Cold Spring Harb Perspect Biol. 2016;8:a021899. doi:10.1101/cshperspect.a021899.
  • Taciak B, Pruszynska I, Kiraga L, Bialasek M, Krol M. Wnt signaling pathway in development and cancer. J Physiol Pharmacol. 2018;69. doi:10.26402/jpp.2018.2.07.
  • Wang Y, Zhang X, Shao J, Liu H, Liu X, Luo E. Adiponectin regulates BMSC osteogenic differentiation and osteogenesis through the Wnt/βcatenin pathway. Sci Rep. 2017;7:3652–3665. doi:10.1038/s41598-017-03899-z. .