1,652
Views
0
CrossRef citations to date
0
Altmetric
Review

Expression Levels of WNT Signaling Pathway Genes During Early Tooth Development

, , , & ORCID Icon
Article: 2212583 | Received 13 Nov 2022, Accepted 05 May 2023, Published online: 17 May 2023

References

  • Kakugawa S, Langton PF, Zebisch M, Howell S, Chang TH, Liu Y, Feizi T, Bineva G, O’Reilly N, Snijders AP, et al. Notum deacylates Wnt proteins to suppress signalling activity. Nature. 2015;519(7542):187–12. PMID: 25731175. doi:10.1038/nature14259.
  • Miller JR. The Wnts. Genome Biol. 2002;3(1):reviews3001.1. REVIEWS3001 PMID: 11806834. doi:10.1186/gb-2001-3-1-reviews3001.
  • Zhang Z, Nor F, Oh M, Cucco C, Shi S, Nor JE. Wnt/β-Catenin signaling determines the vasculogenic fate of postnatal mesenchymal stem cells. Stem Cells. 2016;34(6):1576–87. PMID: 26866635. doi:10.1002/stem.2334.
  • De Santis M, Di Matteo B, Chisari E, Cincinelli G, Angele P, Lattermann C, Filardo G, Vitale ND, Selmi C, Kon E. The role of wnt pathway in the pathogenesis of OA and its potential therapeutic implications in the field of regenerative medicine. Biomed Res Int. 2018; 2018: 7402947. doi: 10.1155/2018/7402947. PMID: 30410938
  • van den Bosch MH, Gleissl TA, Blom AB, van den Berg WB, van Lent PL, van der Kraan PM. Wnts talking with the TGF-β superfamily: wISPers about modulation of osteoarthritis. Rheumatology (Oxford). 2016;55(9):1536–47. PMID: 26667213. doi:10.1093/rheumatology/kev402.
  • Cheng J, Li M, Bai R. The Wnt signaling cascade in the pathogenesis of osteoarthritis and related promising treatment strategies. Front Physiol. 2022;13:954454. doi:10.3389/fphys.2022.954454. PMID: 36117702.
  • Duchartre Y, Kim YM, Kahn M. The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol. 2016;99:141–49. doi:10.1016/j.critrevonc.2015.12.005. PMID: 26775730.
  • Lu X, Yang J, Zhao S, Liu S. Advances of Wnt signalling pathway in dental development and potential clinical application. Organogenesis. 2019;15(4):101–10. PMID: 31482738. doi:10.1080/15476278.2019.1656996.
  • Huang XF, Chai Y. Molecular regulatory mechanism of tooth root development. Int J Oral Sci. 2012;4(4):177–81. PMID: 23222990. doi:10.1038/ijos.2012.61.
  • Yu M, Wong SW, Han D, Cai T. Genetic analysis: wnt and other pathways in nonsyndromic tooth agenesis. Oral Dis. 2019;25(3):646–51. PMID: 29969831. doi:10.1111/odi.12931.
  • Kantaputra PN, Hutsadaloi A, Kaewgahya M, Intachai W, German R, Koparal M, Leethanakul C, Tolun A, Ketudat Cairns JR. WNT10B mutations associated with isolated dental anomalies. Clin Genet. 2018;93(5):992–99. PMID: 29364501. doi:10.1111/cge.13218.
  • Magruder S, Carter E, Williams MA, English J, Akyalcin S, Letra A. Further evidence for the role of WNT10A, WNT10B and GREM2 as candidate genes for isolated tooth agenesis. Orthod Craniofac Res. 2018;21(4):258–63. PMID: 30246922. doi:10.1111/ocr.12248.
  • Yu P, Yang W, Han D, Wang X, Guo S, Li J, Li F, Zhang X, Wong SW, Bai B, et al. Mutations in WNT10B are identified in individuals with oligodontia. Am J Hum Genet. 2016;99(1):195–201. PMID: 27321946. doi:10.1016/j.ajhg.2016.05.012.
  • Goto H, Kimura M, Machida J, Ota A, Nakashima M, Tsuchida N, Adachi J, Aoki Y, Tatematsu T, Takahashi K, et al. A novel LRP6 variant in a Japanese family with oligodontia. Hum Genome Var. 2021;8(1):30. PMID: 34285199. doi:10.1038/s41439-021-00162-w.
  • Kantaputra PJ, Chintakanon W, Intachai K, Adisornkanj S, Pradermdutsadeeporn P, Tongsima P, Ngamphiw B, Olsen C, Tucker AS, Tucker AS, et al. Mutations in LRP6 highlight the role of WNT signaling in oral exostoses and dental anomalies. Arch Oral Biol. 2022;142:105514. PMID: 35961235. doi:10.1016/j.archoralbio.2022.105514.
  • Yu F, Cai W, Jiang B, Xu L, Liu S, Zhao S. A novel mutation of adenomatous polyposis coli (APC) gene results in the formation of supernumerary teeth. J Cell Mol Med. 2018;22(1):152–62. PMID: 28782241. doi:10.1111/jcmm.13303.
  • Oku T, Takayama T, Sato Y, Sato Y, Takada K, Hayashi T, Takahashi M, Kuroda M, Kato J, Niitsu Y. A case of Gardner syndrome with a mutation at codon 1556 of APC: a suggested case of genotype-phenotype correlation in dental abnormality. Eur J Gastroenterol Hepatol. 2004;16(1):101–05. PMID: 15095859. doi:10.1097/00042737-200401000-00015.
  • Hartikka H, Makitie O, Mannikko M, Doria AS, Daneman A, Cole WG, Ala-Kokko L, Sochett EB. Heterozygous mutations in the LDL receptor-related protein 5 (LRP5) gene are associated with primary osteoporosis in children. J Bone Miner Res. 2005;20(5):783–89. PMID: 15824851. doi:10.1359/JBMR.050101.
  • Kantaputra PN, Guven Y, Tripuwabhrut K, Adisornkanj P, Hatsadaloi A, Kaewgahya M, Olsen B, Ngamphiw C, Jatooratthawichot P, Tongsima S, et al. Mutations in LRP5 and BMP4 are associated with mesiodens, tooth agenesis, root malformation, and oral exostoses. Clin Genet. 2022;102(4):333–38. PMID: 35754005. doi:10.1111/cge.14183.
  • Kantaputra PN, Kapoor S, Verma P, Kaewgahya M, Kawasaki K, Ohazama A, Ketudat Cairns JR. Al-Awadi-Raas-Rothschild syndrome with dental anomalies and a novel WNT7A mutation. Eur J Med Genet. 2017;60(12):695–700. PMID: 28917830. doi:10.1016/j.ejmg.2017.09.005.
  • Parveen A, Khan SA, Mirza MU, Bashir H, Arshad F, Iqbal M, Ahmad W, Wahab A, Fiaz A, Naz S, et al. Deleterious variants in WNT10A, EDAR, and EDA causing isolated and syndromic tooth agenesis: a structural perspective from molecular dynamics simulations. Int J Mol Sci. 2019;20(21):5282. PMID: 31652981. doi:10.3390/ijms20215282.
  • Guazzarotti L, Tadini G, Mancini GE, Sani I, Pisanelli S, Galderisi F, D’Auria E, Secondi R, Bottero A, Zuccotti GV. WNT10A gene is the second molecular candidate in a cohort of young Italian subjects with ectodermal derivative impairment (EDI). Clin Genet. 2018;93(3):693–98. PMID: 28976000. doi:10.1111/cge.13147.
  • Martinez-Romero MC, Ballesta-Martinez MJ, Lopez-Gonzalez V, Sanchez-Soler MJ, Serrano-Anton AT, Barreda-Sanchez M, Rodriguez-Pena L, Martinez-Menchon MT, Frias-Iniesta J, Sanchez-Pedreno P, et al. EDA, EDAR, EDARADD and WNT10A allelic variants in patients with ectodermal derivative impairment in the Spanish population. Orphanet J Rare Dis. 2019;14(1):281. PMID: 31796081. doi:10.1186/s13023-019-1251-x.
  • Ismail FF, McGrath J, Sinclair R. Schopf-Schulz-Passarge syndrome: a rare ectodermal dysplasia with a delayed diagnosis. Int J Dermatol. 2020;59(2):257–58. PMID: 31468502. doi:10.1111/ijd.14616.
  • Hsu TC, Lee JY, Hsu MM, Chao SC. Case report of Schöpf-Schulz-Passarge syndrome resulting from a missense mutation, p.Arg104Cys, in WNT10A. J Dermatol. 2018;45(4):475–78. PMID: 29271000. doi:10.1111/1346-8138.14201.
  • Yu M, Liu Y, Liu H, Wong SW, He H, Zhang X, Wang Y, Han D, Feng H. Distinct impacts of bi-allelic WNT10A mutations on the permanent and primary dentitions in odonto-onycho-dermal dysplasia. Am J Med Genet A. 2019;179(1):57–64. PMID: 30569517. doi:10.1002/ajmg.a.60682.
  • Dinckan N, Du R, Petty LE, Coban-Akdemir Z, Jhangiani SN, Paine I, Baugh EH, Erdem AP, Kayserili H, Doddapaneni H, et al. Whole-Exome sequencing identifies novel variants for tooth agenesis. J Dent Res. 2018;97(1):49–59. PMID: 28813618. doi:10.1177/0022034517724149.
  • Bielik P, Bonczek O, Krejci P, Zeman T, Izakovicova-Holla L, Soukalova J, Vanek J, Vojtesek B, Lochman J, Balcar VJ, et al. WNT10A variants: following the pattern of inheritance in tooth agenesis and self-reported family history of cancer. Clin Oral Investig. 2022;26(12):7045–55. PMID: 35999385. doi:10.1007/s00784-022-04664-x.
  • Du R, Dinckan N, Song X, Coban-Akdemir Z, Jhangiani SN, Guven Y, Aktoren O, Kayserili H, Petty LE, Muzny DM, et al. Identification of likely pathogenic and known variants in TSPEAR, LAMB3, BCOR, and WNT10A in four Turkish families with tooth agenesis. Hum Genet. 2018;137(9):689–703. PMID: 30046887. doi:10.1007/s00439-018-1907-y.
  • Grejtakova D, Gabrikova-Dojcakova D, Boronova I, Kyjovska L, Hubcejova J, Fecenkova M, Zigova M, Priganc M, Bernasovska J. WNT10A variants in relation to nonsyndromic hypodontia in eastern Slovak population. J Genet. 2018;97(5):1169–77. PMID: 30555066. doi:10.1007/s12041-018-1011-z.
  • Kantaputra P, Jatooratthawichot P, Tantachamroon O, Nanekrungsan K, Intachai W, Olsen B, Tongsima S, Ngamphiw C, Cairns JRK. Novel dental anomaly–associated mutations in WNT10A protein binding sites. Int Dent J. 2022;73(1):79–86. PMID: 35537890. doi:10.1016/j.identj.2022.04.006.
  • Keskin G, Karaer K, Ucar Gundogar Z. Targeted NGS(„next-generation sequencing“)-Analyse von Mutationen in Kandidatengenen für nichtsyndromale Zahnaplasie. J Orofac Orthop / Fortschritte der Kieferorthopädie. 2022;83(S1):65–74. PMID: 33725141. doi:10.1007/s00056-021-00284-4.
  • Machida J, Goto H, Tatematsu T, Shibata A, Miyachi H, Takahashi K, Izumi H, Nakayama A, Shimozato K, Tokita Y. WNT10A variants isolated from Japanese patients with congenital tooth agenesis. Hum Genome Var. 2017;4(1):17047. PMID: 29367877. doi:10.1038/hgv.2017.47.
  • Park H, Song JS, Shin TJ, Hyun HK, Kim YJ, Kim JW. WNT10A mutations causing oligodontia. Arch Oral Biol. 2019;103:8–11. doi:10.1016/j.archoralbio.2019.05.007. PMID: 31103801.
  • Song S, Zhao R, He H, Zhang J, Feng H, Lin L. WNT10A variants are associated with non-syndromic tooth agenesis in the general population. Hum Genet. 2014;133(1):117–24. PMID: 24043634. doi:10.1007/s00439-013-1360-x.
  • Xie W, Zeng B, Li P, Xu D, Yu D, Zhao W. Two novel mutations in ectodysplasin-A identified in syndromic tooth agenesis. J Coll Physicians Surg Pak. 2022;32:570–74. doi:10.29271/jcpsp.2022.05.570. PMID: 35546689.
  • Zhao K, Lian M, Zou D, Huang W, Zhou W, Shen Y, Wang F, Wu Y. Novel mutations identified in patients with tooth agenesis by whole-exome sequencing. Oral Dis. 2019;25(2):523–34. PMID: 30417976. doi:10.1111/odi.13002.
  • Zhou M, Zhang H, Camhi H, Seymen F, Koruyucu M, Kasimoglu Y, Kim JW, Kim-Berman H, Yuson NMR, Benke PJ, et al. Correction: analyses of oligodontia phenotypes and genetic etiologies. Int J Oral Sci. 2021;13(1):35. PMID: 34772917. doi:10.1038/s41368-021-00141-5.
  • Kantaputra P, Kaewgahya M, Kantaputra W. WNT10A mutations also associated with agenesis of the maxillary permanent canines, a separate entity. Am J Med Genet A. 2014;164A(2):360–63. PMID: 24311251. doi:10.1002/ajmg.a.36280.
  • Hou PS, Chuang CY, Kao CF, Chou SJ, Stone L, Ho HN, Chien CL, Kuo HC. LHX2 regulates the neural differentiation of human embryonic stem cells via transcriptional modulation of PAX6 and CER1. Nucleic Acids Res. 2013;41(16):7753–70. PMID: 23804753. doi:10.1093/nar/gkt567.
  • Mishra S, Agarwalla SK, Pradhan S. Robinow syndrome: a rare diagnosis. J Clin Diagn Res. 2015;9:SD04–05. doi:10.7860/JCDR/2015/15078.6949. PMID: 26816964.
  • Garcia-Morales C, Liu CH, Abu-Elmagd M, Hajihosseini MK, Wheeler GN. Frizzled-10 promotes sensory neuron development in Xenopus embryos. Dev Biol. 2009;335(1):143–55. PMID: 19716814. doi:10.1016/j.ydbio.2009.08.021.
  • Arte S, Parmanen S, Pirinen S, Alaluusua S, Nieminen P, Eisenberg L. Candidate gene analysis of tooth agenesis identifies novel mutations in six genes and suggests significant role for WNT and EDA signaling and allele combinations. PLos One. 2013;8(8):e73705. PMID: 23991204. doi:10.1371/journal.pone.0073705.
  • Haddaji Mastouri M, De Coster P, Zaghabani A, Jammali F, Raouahi N, Salem AB, Saad A, Coucke P, H’Mida Ben Brahim D. Genetic study of non-syndromic tooth agenesis through the screening of paired box 9, msh homeobox 1, axin 2, and Wnt family member 10A genes: a case-series. Eur J Oral Sci. 2018;126(1):24–32. PMID: 29114927. doi:10.1111/eos.12391.
  • Lammi L, Arte S, Somer M, Jarvinen H, Lahermo P, Thesleff I, Pirinen S, Nieminen P. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet. 2004;74(5):1043–50. PMID: 15042511. doi:10.1086/386293.
  • Zhang H, Xu Y, Yue H, Wang C, Gu J, He J, Fu W, Hu W, Zhang Z. Novel mutations of the SERPINF1 and FKBP10 genes in Chinese families with autosomal recessive osteogenesis imperfecta. Int J Mol Med. 2018;41:3662–70. doi:10.3892/ijmm.2018.3542. PMID: 29512769.
  • Mostowska A, Biedziak B, Zadurska M, Dunin-Wilczynska I, Lianeri M, Jagodzinski PP. Nucleotide variants of genes encoding components of the Wnt signalling pathway and the risk of non-syndromic tooth agenesis. Clin Genet. 2013;84(5):429–40. PMID: 23167694. doi:10.1111/cge.12061.
  • Chu KY, Wang YL, Chou YR, Chen JT, Wang YP, Simmer JP, Hu JC, Wang SK. Synergistic mutations of LRP6 and WNT10A in familial tooth agenesis. J Pers Med. 2021;11(11):1217. PMID: 34834569. doi:10.3390/jpm11111217.
  • Huang YX, Gao CY, Zheng CY, Chen X, Yan YS, Sun YQ, Dong XY, Yang K, Zhang DL. Investigation of a novel LRP6 variant causing autosomal-dominant tooth agenesis. Front Genet. 2021;12:688241. doi:10.3389/fgene.2021.688241. PMID: 34306029.
  • Ockeloen CW, Khandelwal KD, Dreesen K, Ludwig KU, Sullivan R, van Rooij I, Thonissen M, Swinnen S, Phan M, Conte F, et al. Novel mutations in LRP6 highlight the role of WNT signaling in tooth agenesis. Genet Med. 2016;18(11):1158–62. PMID: 26963285. doi:10.1038/gim.2016.10.
  • Wang H, Liu Y, Zheng Y, Zhao X, Lin S, Zhang Q, Zhang X. A novel missense mutation of LRP6 identified by whole-exome sequencing in a Chinese family with non-syndromic tooth agenesis. Orthod Craniofac Res. 2021;24(2):233–40. PMID: 32844563. doi:10.1111/ocr.12424.
  • Yu M, Fan Z, Wong SW, Sun K, Zhang L, Liu H, Feng H, Liu Y, Han D. Lrp6 dynamic expression in tooth development and mutations in oligodontia. J Dent Res. 2021;100(4):415–22. PMID: 33164649. doi:10.1177/0022034520970459.
  • Kim SJ, Bieganski T, Sohn YB, Kozlowski K, Semenov M, Okamoto N, Kim CH, Ko AR, Ahn GH, Choi YL, et al. Identification of signal peptide domain SOST mutations in autosomal dominant craniodiaphyseal dysplasia. Hum Genet. 2011;129(5):497–502. PMID: 21221996. doi:10.1007/s00439-011-0947-3.
  • Gordon CT, Vuillot A, Marlin S, Gerkes E, Henderson A, AlKindy A, Holder-Espinasse M, Park SS, Omarjee A, Sanchis-Borja M, et al. Heterogeneity of mutational mechanisms and modes of inheritance in auriculocondylar syndrome. J Med Genet. 2013;50(3):174–86. PMID: 23315542. doi:10.1136/jmedgenet-2012-101331.
  • Hu R, Qiu Y, Li Y, Li J. A novel frameshift mutation of DVL1-induced Robinow syndrome: a case report and literature review. Mol Genet Genomic Med. 2022;10(3):e1886. PMID: 35137569. doi:10.1002/mgg3.1886.
  • White JJ, Mazzeu JF, Hoischen A, Bayram Y, Withers M, Gezdirici A, Kimonis V, Steehouwer M, Jhangiani SN, Muzny DM, et al. DVL3 alleles resulting in a −1 frameshift of the last exon mediate autosomal-dominant robinow syndrome. Am J Hum Genet. 2016;98(3):553–61. PMID: 26924530. doi:10.1016/j.ajhg.2016.01.005.
  • Roifman M, Marcelis CL, Paton T, Marshall C, Silver R, Lohr JL, Yntema HG, Venselaar H, Kayserili H, van Bon B, et al. De Novo WNT5A-associated autosomal dominant Robinow syndrome suggests specificity of genotype and phenotype. Clin Genet. 2015;87(1):34–41. PMID: 24716670. doi:10.1111/cge.12401.
  • Person AD, Beiraghi S, Sieben CM, Hermanson S, Neumann AN, Robu ME, Schleiffarth JR, Billington CJ, van Bokhoven H Jr., Hoogeboom JM, et al. WNT5A mutations in patients with autosomal dominant Robinow syndrome. Dev Dyn. 2010;239:327–37. PMID: 19918918. doi:10.1002/dvdy.22156.
  • Issa YA, Kamal L, Rayyan AA, Dweik D, Pierce S, Lee MK, King MC, Walsh T, Kanaan M. Mutation of KREMEN1, a modulator of Wnt signaling, is responsible for ectodermal dysplasia including oligodontia in Palestinian families. Eur J Hum Genet. 2016;24(10):1430–35. PMID: 27049303. doi:10.1038/ejhg.2016.29.
  • Beck DB, Cho MT, Millan F, Yates C, Hannibal M, O’Connor B, Shinawi M, Connolly AM, Waggoner D, Halbach S, et al. A recurrent de novo CTBP1 mutation is associated with developmental delay, hypotonia, ataxia, and tooth enamel defects. Neurogenetics. 2016;17(3):173–78. PMID: 27094857. doi:10.1007/s10048-016-0482-4.
  • Fang X, Svitkina TM. Adenomatous Polyposis Coli (APC) in cell migration. Eur J Cell Biol. 2022;101(3):151228. PMID: 35483122. doi:10.1016/j.ejcb.2022.151228.
  • Pergolizzi M, Bizzozero L, Maione F, Maldi E, Isella C, Macagno M, Mariella E, Bardelli A, Medico E, Marchio C, et al. The neuronal protein Neuroligin 1 promotes colorectal cancer progression by modulating the APC/β-catenin pathway. J Exp Clin Cancer Res. 2022;41(1):266. PMID: 36056393. doi:10.1186/s13046-022-02465-4.
  • Williams M, Zeng Y, Chiquet B, Jacob H, Kurtis Kasper F, Harrington DA, English J, Akyalcin S, Letra A. Functional characterization of ATF1, GREM2 and WNT10B variants associated with tooth agenesis. Orthod Craniofac Res. 2021;24(4):486–93. PMID: 33369218. doi:10.1111/ocr.12462.
  • Nadiri A, Kuchler-Bopp S, Haikel Y, Lesot H. Immunolocalization of BMP-2/-4, FGF-4, and WNT10b in the developing mouse first lower molar. J Histochem Cytochem. 2004;52(1):103–12. PMID: 14688221. doi:10.1177/002215540405200110.
  • Tziotzios C, Petrof G, Liu L, Verma A, Wedgeworth EK, Mellerio JE, McGrath JA. Clinical features and WNT 10A mutations in seven unrelated cases of Schöpf–Schulz–Passarge syndrome. Br J Dermatol. 2014;171(5):1211–14. PMID: 24902757. doi:10.1111/bjd.13158.
  • Yu M, Jiang Z, Wang Y, Xi Y, Yang G. Molecular mechanisms for short root anomaly. Oral Dis. 2021;27(2):142–50. PMID: 31883171. doi:10.1111/odi.13266.
  • Lavicky J, Kolouskova M, Prochazka D, Rakultsev V, Gonzalez-Lopez M, Steklikova K, Bartos M, Vijaykumar A, Kaiser J, Porizka P, et al. The development of dentin microstructure is controlled by the type of adjacent epithelium. J Bone Miner Res. 2022;37(2):323–39. PMID: 34783080. doi:10.1002/jbmr.4471.
  • Fjeld K, Kettunen P, Furmanek T, Kvinnsland IH, Luukko K. Dynamic expression of Wnt signaling-related Dickkopf1, -2, and -3 mRnas in the developing mouse tooth. Dev Dyn. 2005;233(1):161–66. PMID: 15759274. doi:10.1002/dvdy.20285.
  • Han XL, Liu M, Voisey A, Ren YS, Kurimoto P, Gao T, Tefera L, Dechow P, Ke HZ, Feng JQ. Post-natal effect of overexpressed DKK1 on mandibular molar formation. J Dent Res. 2011;90(11):1312–17. PMID: 21917600. doi:10.1177/0022034511421926.
  • Forlino A, Marini JC. Osteogenesis imperfecta. Lancet. 2016;387(10028):1657–71. PMID: 26542481. doi:10.1016/S0140-6736(15)00728-X.
  • Alrefaei AF, Munsterberg AE, Wheeler GN, Klymkowsky M. FZD10 regulates cell proliferation and mediates Wnt1 induced neurogenesis in the developing spinal cord. PLos One. 2020;15(6):e0219721. PMID: 32531778. doi:10.1371/journal.pone.0219721.
  • Wu L, Xie J, Qi Y, Su T, Jiang L, Zhou W, Jiang Y, Zhang C, Zhong X, Cao Y, et al. Mutational landscape of non-functional adrenocortical adenomas. Endocr Relat Cancer. 2022;29(9):521–32. PMID: 35731037. doi:10.1530/ERC-21-0410.
  • Gumber D, Do M, Suresh Kumar N, Sonavane PR, Wu CCN, Cruz LS, Grainger S, Carson D, Gaasterland T, Willert K. Selective activation of FZD7 promotes mesendodermal differentiation of human pluripotent stem cells. Elife. 2020;9: PMID: 33331818. doi:10.7554/eLife.63060.
  • Fraungruber P, Kaltofen T, Heublein S, Kuhn C, Mayr D, Burges A, Mahner S, Rathert P, Jeschke U, Trillsch F. G protein-coupled estrogen receptor correlates with Dkk2 expression and has prognostic impact in ovarian cancer patients. Front Endocrinol (Lausanne). 2021;12:564002. doi:10.3389/fendo.2021.564002. PMID: 33679613.