4,946
Views
107
CrossRef citations to date
0
Altmetric
Review

Codon-biased translation can be regulated by wobble-base tRNA modification systems during cellular stress responses

, &
Pages 603-614 | Received 22 Aug 2014, Accepted 13 Mar 2015, Published online: 15 Jun 2015

References

  • Dedon PC, Begley TJ. A System of RNA Modifications and Biased Codon Use Controls Cellular Stress Response at the Level of Translation. Chem Res Toxicol (2014) 17:7
  • Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA, Zhang X, Vendeix FA, Fabris D, Agris PF. The RNA Modification Database, RNAMDB: 2011 update. Nucleic Acids Res (2011) 39:D195-201; PMID:21071406; http://dx.doi.org/10.1093/nar/gkq1028
  • Kirino Y, Yasukawa T, Ohta S, Akira S, Ishihara K, Watanabe K, Suzuki T. Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc Natl Acad Sci U S A (2004) 101:15070-5; PMID:15477592; http://dx.doi.org/10.1073/pnas.0405173101
  • Yasukawa T, Suzuki T, Ishii N, Ohta S, & Watanabe K. Wobble modification defect in tRNA disturbs codon-anticodon interaction in a mitochondrial disease. EMBO J 20:4794-802; PMID:11532943; http://dx.doi.org/10.1093/emboj/20.17.4794
  • Spinola M, Galvan A, Pignatiello C, Conti B, Pastorino U, Nicander B, Paroni R, Dragani TA. Identification and functional characterization of the candidate tumor suppressor gene TRIT1 in human lung cancer. Oncogene (2005) 24:5502-09; PMID:15870694; http://dx.doi.org/10.1038/sj.onc.1208687
  • Spinola M, Colombo F, Falvella FS, Dragani TA. N6-isopentenyladenosine: a potential therapeutic agent for a variety of epithelial cancers. Int J Cancer (2007) 120:2744-8; PMID:17304507; http://dx.doi.org/10.1002/ijc.22601
  • Su D, Chan CT, Gu C, Lim KS, Chionh YH, McBee ME, Russell BS, Babu IR, Begley TJ, Dedon PC. Quantitative analysis of ribonucleoside modifications in tRNA by HPLC-coupled mass spectrometry. Nat Protoc (2014) 9:828-41; PMID:24625781; http://dx.doi.org/10.1038/nprot.2014.047
  • Begley U, Sosa MS, Avivar-Valderas A, Patil A, Endres L, Estrada Y, Chan CT, Su D, Dedon PC, Aguirre-Ghiso JA. et al. A human tRNA methyltransferase 9-like protein prevents tumour growth by regulating LIN9 and HIF1-alpha. EMBO Mol Med (2013) 5:1-18; PMID:23283747; http://dx.doi.org/10.1002/emmm.201201161
  • Patil A, Dyavaiah M, Joseph F, Rooney JP, Chan CT, Dedon PC, Begley TJ. Increased tRNA modification and gene-specific codon usage regulate cell cycle progression during the DNA damage response. Cell Cycle (2012) 11:3656-65; PMID:22935709; http://dx.doi.org/10.4161/cc.21919
  • Patil A, Chan CT, Dyavaiah M, Rooney JP, Dedon PC, Begley TJ. Translational infidelity-induced protein stress results from a deficiency in Trm9-catalyzed tRNA modifications. RNA Biology (2012) 9:990-1001; PMID:22832247; http://dx.doi.org/10.4161/rna.20531
  • Chan CTY, Pang YL, Deng W, Babu IR, Dyavaiah M, Begley TJ, Dedon PC. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat Commun (2012) 3:937; PMID:22760636; http://dx.doi.org/10.1038/ncomms1938
  • Chan CT, Dyavaiah M, DeMott MS, Taghizadeh K, Dedon PC, Begley TJ. A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet (2010) 6:e1001247; PMID:21187895; http://dx.doi.org/10.1371/journal.pgen.1001247
  • Carlson BA, Xu XM, Gladyshev VN, Hatfield DL. Selective rescue of selenoprotein expression in mice lacking a highly specialized methyl group in selenocysteine tRNA. J Biol Chem (2005) 280:5542-8; PMID:15611090; http://dx.doi.org/10.1074/jbc.M411725200
  • Moustafa ME, Kumaraswamy E, Zhong N, Rao M, Carlson BA, Hatfield DL. Models for assessing the role of selenoproteins in health. J Nutr (2003) 133:2494S-6S; PMID:12840229
  • Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, Gladyshev VN. Characterization of mammalian selenoproteomes. Science (2003) 300:1439-43; PMID:12775843; http://dx.doi.org/10.1126/science.1083516
  • Novoselov SV, Calvisi DF, Labunskyy VM, Factor VM, Carlson BA, Fomenko DE, Moustafa ME, Hatfield DL, Gladyshev VN. Selenoprotein deficiency and high levels of selenium compounds can effectively inhibit hepatocarcinogenesis in transgenic mice. Oncogene (2005) 24:8003-11; PMID:16170372; http://dx.doi.org/10.1038/sj.onc.1208940
  • Moustafa ME, Carlson BA, El-Saadani MA, Kryukov GV, Sun QA, Harney JW, Hill KE, Combs GF, Feigenbaum L, Mansur DB. et al. Selective inhibition of selenocysteine tRNA maturation and selenoprotein synthesis in transgenic mice expressing isopentenyladenosine-deficient selenocysteine tRNA. Mol Cell Biol (2001) 21:3840-52; PMID:11340175; http://dx.doi.org/10.1128/MCB.21.11.3840-3852.2001
  • Songe-Moller L van den Born E, Leihne V, Vågbø CB, Kristoffersen T, Krokan HE, Kirpekar F, Falnes PØ, Klungland A. Mammalian ALKBH8 possesses tRNA methyltransferase activity required for the biogenesis of multiple wobble uridine modifications implicated in translational decoding. Mol Cell Biol (2010) 30:1814-27; PMID:20123966; http://dx.doi.org/10.1128/MCB.01602-09
  • Agris PF, Decoding the genome: a modified view. Nucleic Acids Res (2004) 32:223-38; PMID:14715921; http://dx.doi.org/10.1093/nar/gkh185
  • Durant PC, Bajji AC, Sundaram M, Kumar RK, Davis DR. Structural effects of hypermodified nucleosides in the Escherichia coli and human tRNALys anticodon loop: the effect of nucleosides s2U, mcm5U, mcm5s2U, mnm5s2U, t6A, and ms2t6A. Biochemistry (2005) 44:8078-89; PMID:15924427; http://dx.doi.org/10.1021/bi050343f
  • Park SG, Schimmel P, Kim S. Aminoacyl tRNA synthetases and their connections to disease. Proc Natl Acad Sci U S A (2008) 105:11043-9; PMID:18682559; http://dx.doi.org/10.1073/pnas.0802862105
  • Agris PF, Vendeix FA, Graham WD. tRNA's wobble decoding of the genome: 40 years of modification. J Mol Biol (2007) 366:1-13; PMID:17187822; http://dx.doi.org/10.1016/j.jmb.2006.11.046
  • Vila-Sanjurjo A, Ridgeway WK, Seymaner V, Zhang W, Santoso S, Yu K, Cate JH. X-ray crystal structures of the WT and a hyper-accurate ribosome from Escherichia coli. Proc Natl Acad Sci U S A (2003) 100:8682-7; PMID:12853578; http://dx.doi.org/10.1073/pnas.1133380100
  • Tumu S, Patil A, Towns WL, Dyavaiah M, Begley TJ. The gene-specific codon counting database: a genome-based catalog of one-, two-, three-, four- and five-codon combinations present in Saccharomyces cerevisiae genes. Database (2012) Feb 8; 2012:bas002; PMID:22323063
  • Begley U, Dyavaiah M, Patil A, Rooney JP, DiRenzo D, Young CM, Conklin DS, Zitomer RS, Begley TJ. Trm9-Catalyzed tRNA Modifications Link Translation to the DNA Damage Response. Mol Cell (2007) 28:860-70; PMID:18082610; http://dx.doi.org/10.1016/j.molcel.2007.09.021
  • Howard MT, Anderson CB, Fass U, Khatri S, Gesteland RF, Atkins JF, Flanigan KM. Readthrough of dystrophin stop codon mutations induced by aminoglycosides. Ann Neurol (2004) 55:422-6; PMID:14991821; http://dx.doi.org/10.1002/ana.20052
  • Lai CH, Chun HH, Nahas SA, Mitui M, Gamo KM, Du L, Gatti RA. Correction of ATM gene function by aminoglycoside-induced read-through of premature termination codons. Proc Natl Acad Sci U S A (2004) 101:15676-81; PMID:15498871; http://dx.doi.org/10.1073/pnas.0405155101
  • Lukacs GL, Durie PR. Pharmacologic approaches to correcting the basic defect in cystic fibrosis. The New England journal of medicine (2003) 349:1401-4; PMID:14534332; http://dx.doi.org/10.1056/NEJMp038113
  • Strachan T, Read A. Human Molecular Genetics. Taylor & Francis, (1999) Chapter 7
  • Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov (2008) 7:1013-30; PMID:19043451; http://dx.doi.org/10.1038/nrd2755
  • Lin JH, Walter P, Yen TS. Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol (2008) 3:399-425; PMID:18039139; http://dx.doi.org/10.1146/annurev.pathmechdis.3.121806.151434
  • Turturici G, Sconzo G, Geraci F. Hsp70 and its molecular role in nervous system diseases. Biochem Res Int (2011) 2011:618127; PMID:21403864; http://dx.doi.org/10.1155/2011/618127
  • Hoshino T, Murao N, Namba T, Takehara M, Adachi H, Katsuno M, Sobue G, Matsushima T, Suzuki T, Mizushima T. Suppression of Alzheimer's disease-related phenotypes by expression of heat shock protein 70 in mice. J Neurosci (2011) 31:5225-34; PMID:21471357; http://dx.doi.org/10.1523/JNEUROSCI.5478-10.2011
  • Novo G, Cappello F, Rizzo M, Fazio G, Zambuto S, Tortorici E, Marino Gammazza A, Corrao S, Zummo G, De Macario EC. et al. Hsp60 and heme oxygenase-1 (Hsp32) in acute myocardial infarction. Translational research : the journal of laboratory and clinical medicine (2011) 157:285-92; PMID:21497776; http://dx.doi.org/10.1016/j.trsl.2011.01.003
  • Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW, Wallace DC. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell (1990) 61:931-7; PMID:2112427; http://dx.doi.org/10.1016/0092-8674(90)90059-N
  • Schaffer S, Jong C. in Genes and Cardiovascular Function. (eds. B Ostadal, M Nagano & NS Dhalla) (Taylor & Francis US, 2011; 93-100)
  • Yasukawa T, Suzuki T, Ueda T, Ohta S, Watanabe K. Modification defect at anticodon wobble nucleotide of mitochondrial tRNAs(Leu)(UUR) with pathogenic mutations of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. J Biol Chem (2000) 275:4251-7; PMID:10660592; http://dx.doi.org/10.1074/jbc.275.6.4251
  • Kirino Y, Goto Y, Campos Y, Arenas J, Suzuki T. Specific correlation between the wobble modification deficiency in mutant tRNAs and the clinical features of a human mitochondrial disease. Proc Natl Acad Sci U S A (2005) 102:7127-32; PMID:15870203; http://dx.doi.org/10.1073/pnas.0500563102
  • Baranowski W, Dirheimer G, Jakowicki JA, Keith G. Deficiency of queuine, a highly modified purine base, in transfer RNAs from primary and metastatic ovarian malignant tumors in women. Cancer Res (1994) 54:4468-71; PMID:8044797
  • Huang BS, Wu RT, Chien KY. Relationship of the queuine content of transfer ribonucleic acids to histopathological grading and survival in human lung cancer. Cancer Res (1992) 52:4696-700; PMID:1511436
  • Dirheimer G, Baranowski W, Keith G. Variations in tRNA modifications, particularly of their queuine content in higher eukaryotes. Its relation to malignancy grading. Biochimie (1995) 77:99-103; PMID:7599283; http://dx.doi.org/10.1016/0300-9084(96)88111-9
  • Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science (1991) 253:49-53; PMID:1905840; http://dx.doi.org/10.1126/science.1905840
  • Stein T, Crighton D, Boyle JM, Varley JM, White RJ. RNA polymerase III transcription can be derepressed by oncogenes or mutations that compromise p53 function in tumours and Li-Fraumeni syndrome. Oncogene (2002) 21:2961-70; PMID:12082526; http://dx.doi.org/10.1038/sj.onc.1205372
  • Shimada K, Nakamura M, Anai S, De Velasco M, Tanaka M, Tsujikawa K, Ouji Y, Konishi N. A novel human AlkB homologue, ALKBH8, contributes to human bladder cancer progression. Cancer Res (2009) 69:3157-64; PMID:19293182; http://dx.doi.org/10.1158/0008-5472.CAN-08-3530
  • Toyokuni S, Okamoto K, Yodoi J, Hiai H. Persistent oxidative stress in cancer. FEBS Lett (1995) 358:1-3; PMID:7821417; http://dx.doi.org/10.1016/0014-5793(94)01368-B
  • Klassen R, Wemhoff S, Krause J, Meinhardt F. DNA repair defects sensitize cells to anticodon nuclease yeast killer toxins. Mol Genet Genomics (2011) 285:185-95; PMID:21188417; http://dx.doi.org/10.1007/s00438-010-0597-5
  • Hopper AK, Phizicky EM. tRNA transfers to the limelight. Genes Dev (2003) 17:162-80; PMID:12533506; http://dx.doi.org/10.1101/gad.1049103
  • Phizicky EM, Hopper AK. tRNA biology charges to the front. Genes Dev (2010) 24:1832-60; PMID:20810645; http://dx.doi.org/10.1101/gad.1956510
  • Towns WL, Begley TJ. Transfer RNA methytransferases and their corresponding modifications in budding yeast and humans: activities, predications, and potential roles in human health. DNA Cell Biol (2012) 31:434-54; PMID:22191691; http://dx.doi.org/10.1089/dna.2011.1437
  • Pluta K, Lefebvre O, Martin NC, Smagowicz WJ, Stanford DR, Ellis SR, Hopper AK, Sentenac A, Boguta M. Maf1p, a negative effector of RNA polymerase III in Saccharomyces cerevisiae. Mol Cell Biol (2001) 21:5031-40; PMID:11438659; http://dx.doi.org/10.1128/MCB.21.15.5031-5040.2001
  • Graczyk D, Debski J, Muszyńska G, Bretner M, Lefebvre O, Boguta M. Casein kinase II-mediated phosphorylation of general repressor Maf1 triggers RNA polymerase III activation. Proc Natl Acad Sci U S A (2011) 108:4926-31; PMID:21383183; http://dx.doi.org/10.1073/pnas.1010010108
  • Moir RD, Lee J, Haeusler RA, Desai N, Engelke DR, Willis IM. Protein kinase A regulates RNA polymerase III transcription through the nuclear localization of Maf1. Proc Natl Acad Sci U S A (2006) 103:15044-9; PMID:17005718; http://dx.doi.org/10.1073/pnas.0607129103
  • Huber A Bodenmiller B, Uotila A, Stahl M, Wanka S, Gerrits B, Aebersold R, Loewith R. Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev (2009) 23:1929-43; PMID:19684113; http://dx.doi.org/10.1101/gad.532109
  • Lee J, Moir RD, Willis IM. Regulation of RNA polymerase III transcription involves SCH9-dependent and SCH9-independent branches of the target of rapamycin (TOR) pathway. J Biol Chem (2009) 284:12604-8; PMID:19299514; http://dx.doi.org/10.1074/jbc.C900020200
  • Wei Y, Tsang CK, Zheng XF. Mechanisms of regulation of RNA polymerase III-dependent transcription by TORC1. Embo J (2009) 28:2220-30; PMID:19574957; http://dx.doi.org/10.1038/emboj.2009.179
  • Oler AJ, Cairns BR. PP4 dephosphorylates Maf1 to couple multiple stress conditions to RNA polymerase III repression. Embo J (2012) 31:1440-52; PMID:22333918; http://dx.doi.org/10.1038/emboj.2011.501
  • Vannini A, Ringel R, Kusser AG, Berninghausen O, Kassavetis GA, Cramer P. Molecular basis of RNA polymerase III transcription repression by Maf1. Cell (2010) 143:59-70; PMID:20887893; http://dx.doi.org/10.1016/j.cell.2010.09.002
  • Oficjalska-Pham D, Harismendy O, Smagowicz WJ, Gonzalez de Peredo A, Boguta M, Sentenac A, Lefebvre O. General repression of RNA polymerase III transcription is triggered by protein phosphatase type 2A-mediated dephosphorylation of Maf1. Mol Cell (2006) 22:623-32; PMID:16762835; http://dx.doi.org/10.1016/j.molcel.2006.04.008
  • Roberts DN, Wilson B, Huff JT, Stewart AJ, Cairns BR. Dephosphorylation and genome-wide association of Maf1 with Pol III-transcribed genes during repression. Mol Cell (2006) 22:633-44; PMID:16762836; http://dx.doi.org/10.1016/j.molcel.2006.04.009
  • Upadhya R, Lee J, Willis IM. Maf1 is an essential mediator of diverse signals that repress RNA polymerase III transcription. Mol Cell (2002) 10:1489-94; PMID:12504022; http://dx.doi.org/10.1016/S1097-2765(02)00787-6
  • Johnson SS, Zhang C, Fromm J, Willis IM, Johnson DL. Mammalian Maf1 is a negative regulator of transcription by all three nuclear RNA polymerases. Mol Cell (2007) 26:367-79; PMID:17499043; http://dx.doi.org/10.1016/j.molcel.2007.03.021
  • Singer M, Berg P. Genes and Genomes: A Changing Perspective. (Taylor & Francis, Mill Valley, CA; 1991)
  • Wolin SL, Matera AG. The trials and travels of tRNA. Genes Dev (1999) 13:1-10; PMID:9887094; http://dx.doi.org/10.1101/gad.13.1.1
  • Maraia RJ, Lamichhane TN. 3′ processing of eukaryotic precursor tRNAs. Wiley Interdiscip Rev RNA (2012) 2:362-75; http://dx.doi.org/10.1002/wrna.64
  • Intine RV, Sakulich AL, Koduru SB, Huang Y, Pierstorff E, Goodier JL, Phan L, Maraia RJ. Control of transfer RNA maturation by phosphorylation of the human La antigen on serine 366. Mol Cell (2000) 6:339-48; PMID:10983981; http://dx.doi.org/10.1016/S1097-2765(00)00034-4
  • Intine RV, Tenenbaum SA, Sakulich AL, Keene JD, Maraia RJ. Differential phosphorylation and subcellular localization of La RNPs associated with precursor tRNAs and translation-related mRNAs. Mol Cell (2003) 12:1301-7; PMID:14636586; http://dx.doi.org/10.1016/S1097-2765(03)00429-5
  • Rutjes SA, Utz PJ, van der Heijden A, Broekhuis C, van Venrooij WJ, Pruijn GJ. The La (SS-B) autoantigen, a key protein in RNA biogenesis, is dephosphorylated and cleaved early during apoptosis. Cell Death Differ (1999) 6:976-86; PMID:10556975; http://dx.doi.org/10.1038/sj.cdd.4400571
  • Abelson J, Trotta CR, Li H. tRNA splicing. J Biol Chem (1998) 273:12685-8; PMID:9582290; http://dx.doi.org/10.1074/jbc.273.21.12685
  • Budde BS, Namavar Y, Barth PG, Poll-The BT, Nürnberg G, Becker C, van Ruissen F, Weterman MA, Fluiter K, te Beek ET. et al. tRNA splicing endonuclease mutations cause pontocerebellar hypoplasia. Nat Genet (2008) 40:1113-8; PMID:18711368; http://dx.doi.org/10.1038/ng.204
  • Chan PH, Role of oxidants in ischemic brain damage. Stroke (1996) 27:1124-1129; PMID:8650725; http://dx.doi.org/10.1161/01.STR.27.6.1124
  • Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci (1999) 22:391-7; PMID:10441299; http://dx.doi.org/10.1016/S0166-2236(99)01401-0
  • Marston AL, Tham WH, Shah H, Amon A. A genome-wide screen identifies genes required for centromeric cohesion. Science (2004) 303:1367-70; PMID:14752166; http://dx.doi.org/10.1126/science.1094220
  • Ivanov P, Emara MM, Villen J, Gygi SP, Anderson P. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell (2011) 43:613-23; PMID:21855800; http://dx.doi.org/10.1016/j.molcel.2011.06.022
  • Ling J, Reynolds N, Ibba M. Aminoacyl-tRNA synthesis and translational quality control. Annu Rev Microbiol (2009) 63:61-78; PMID:19379069; http://dx.doi.org/10.1146/annurev.micro.091208.073210
  • Pan T, Adaptive translation as a mechanism of stress response and adaptation. Annu Rev Genet (2013) 47:121-37; PMID:23988117; http://dx.doi.org/10.1146/annurev-genet-111212-133522
  • Netzer N, Goodenbour JM, David A, Dittmar KA, Jones RB, Schneider JR, Boone D, Eves EM, Rosner MR, Gibbs JS. et al. Innate immune and chemically triggered oxidative stress modifies translational fidelity. Nature (2009) 462:522-6; PMID:19940929; http://dx.doi.org/10.1038/nature08576
  • Wiltrout E, Goodenbour JM, Frechin M, Pan T. Misacylation of tRNA with methionine in Saccharomyces cerevisiae. Nucleic Acids Res (2012) 40:10494-506; PMID:22941646; http://dx.doi.org/10.1093/nar/gks805
  • Ghavidel A, Kislinger T, Pogoutse O, Sopko R, Jurisica I, Emili A. Impaired tRNA nuclear export links DNA damage and cell-cycle checkpoint. Cell (2007) 131:915-26; PMID:18045534; http://dx.doi.org/10.1016/j.cell.2007.09.042
  • Kadaba S, Wang X, Anderson JT. Nuclear RNA surveillance in Saccharomyces cerevisiae: Trf4p-dependent polyadenylation of nascent hypomethylated tRNA and an aberrant form of 5S rRNA. RNA (2006) 12:508-21; PMID:16431988; http://dx.doi.org/10.1261/rna.2305406
  • Chernyakov I, Whipple JM, Kotelawala L, Grayhack EJ, Phizicky EM. Degradation of several hypomodified mature tRNA species in Saccharomyces cerevisiae is mediated by Met22 and the 5′-3′ exonucleases Rat1 and Xrn1. Genes Dev (2008) 22:1369-80; PMID:18443146; http://dx.doi.org/10.1101/gad.1654308
  • Alexandrov A, Chernyakov I, Gu W, Hiley SL, Hughes TR, Grayhack EJ, Phizicky EM. Rapid tRNA decay can result from lack of nonessential modifications. Mol Cell (2006) 21:87-96; PMID:16387656; http://dx.doi.org/10.1016/j.molcel.2005.10.036
  • Alexandrov A, Grayhack EJ, Phizicky EM. tRNA m7G methyltransferase Trm8p/Trm82p: evidence linking activity to a growth phenotype and implicating Trm82p in maintaining levels of active Trm8p. Rna (2005) 11:821-30; PMID:15811913; http://dx.doi.org/10.1261/rna.2030705
  • Alexandrov A, Martzen MR, Phizicky EM. Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA (2002) 8:1253-66; PMID:12403464; http://dx.doi.org/10.1017/S1355838202024019
  • Thompson DM, Parker R. The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol (2009) 185:43-50; PMID:19332891; http://dx.doi.org/10.1083/jcb.200811119
  • Thompson DM, Lu C, Green PJ, Parker R. tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA (2008) 14:2095-103; PMID:18719243; http://dx.doi.org/10.1261/rna.1232808
  • Yamasaki S, Ivanov P, Hu GF, Anderson P. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol (2009) 185:35-42; PMID:19332886; http://dx.doi.org/10.1083/jcb.200811106
  • Fu H, Feng J, Liu Q, Sun F, Tie Y, Zhu J, Xing R, Sun Z, Zheng X. Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett (2009) 583:437-442; PMID:19114040; http://dx.doi.org/10.1016/j.febslet.2008.12.043
  • Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. PNAS (1998) 95:14863-8; PMID:9843981; http://dx.doi.org/10.1073/pnas.95.25.14863
  • Sies H, Role of metabolic H2O2 generation: redox signaling and oxidative stress. J Biol Chem (2014) 289:8735-41; PMID:24515117; http://dx.doi.org/10.1074/jbc.R113.544635
  • Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal (2012) 24:981-90; PMID:22286106; http://dx.doi.org/10.1016/j.cellsig.2012.01.008
  • Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol (2000) 279, L1005-1028; PMID:11076791
  • Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell (1998) 9:3273-97; PMID:9843569; http://dx.doi.org/10.1091/mbc.9.12.3273
  • Flanagan JM, Healey S, Young J, Whitehall V, Trott DA, Newbold RF, Chenevix-Trench G. Mapping of a candidate colorectal cancer tumor-suppressor gene to a 900-kilobase region on the short arm of chromosome 8. Genes Chromosomes Cancer (2004) 40:247-60; PMID:15139003; http://dx.doi.org/10.1002/gcc.20039
  • Kalhor HR, Clarke S. Novel methyltransferase for modified uridine residues at the wobble position of tRNA. Mol Cell Biol (2003) 23:9283-92; PMID:14645538; http://dx.doi.org/10.1128/MCB.23.24.9283-9292.2003
  • Maraia RJ, Blewett NH, Bayfield MA. It's a mod mod tRNA world. Nat Chem Biol (2008) 3:162-4; http://dx.doi.org/10.1038/nchembio0308-162
  • Dlakic M, The ribosomal subunit assembly line. Genome Biol (2005) 6:234; PMID:16207363; http://dx.doi.org/10.1186/gb-2005-6-10-234
  • Mauro VP, Edelman G.M. The ribosome filter redux. Cell Cycle (2007) 6:2246-51; PMID:17890902; http://dx.doi.org/10.4161/cc.6.18.4739
  • Yao R, Zhang Z, An X, Bucci B, Perlstein DL, Stubbe J, Huang M. Subcellular localization of yeast ribonucleotide reductase regulated by the DNA replication and damage checkpoint pathways. Proc Natl Acad Sci U S A (2003) 100:6628-33; PMID:12732713; http://dx.doi.org/10.1073/pnas.1131932100
  • Turner MK, Abrams R, Lieberman I. Levels of ribonucleotide reductase activity during the division cycle of the L cell, J Biol Chem (1968) 243:3725-8; PMID:5658547
  • Nordenskjold BA, Skoog L, Brown NC, Reichard P. Deoxyribonucleotide pools and deoxyribonucleic acid synthesis in cultured mouse embryo cells. J Biol Chem (1970) 245:5360-8; PMID:4319240
  • Elledge SJ, Zhou Z, Allen JB. Ribonucleotide reductase: regulation, regulation, regulation. Trends Biochem Sci (1992) 17:119-23; PMID:1412696; http://dx.doi.org/10.1016/0968-0004(92)90249-9
  • Elledge SJ, Zhou Z, Allen JB, Navas TA. DNA damage and cell cycle regulation of ribonucleotide reductase. Bioessays (1993) 15:333-9; PMID:8343143; http://dx.doi.org/10.1002/bies.950150507
  • Chabes A, Georgieva B, Domkin V, Zhao X, Rothstein R, Thelander L. Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell (2003) 112:391-401; PMID:12581528; http://dx.doi.org/10.1016/S0092-8674(03)00075-8
  • Shields DC, Sharp PM. Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases. Nucleic acids Res (1987) 15:8023-40; PMID:3118331; http://dx.doi.org/10.1093/nar/15.19.8023
  • Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O'Shea EK, Weissman JS. Global analysis of protein expression in yeast. Nature (2003) 425:737-41; PMID:14562106; http://dx.doi.org/10.1038/nature02046
  • Ikemura T. Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol (1985) 2:13-4; PMID:3916708
  • Plotkin JB, Kudla G. Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet (2011) 12:32-42; PMID:21102527; http://dx.doi.org/10.1038/nrg2899
  • Novoa EM, Pavon-Eternod, M., Pan, T, Ribas de Pouplana, L. A role for tRNA modifications in genome structure and codon usage. Cell (2012) 149:202-13; PMID:22464330; http://dx.doi.org/10.1016/j.cell.2012.01.050
  • Percudani R, Pavesi A, Ottonello S. Transfer RNA gene redundancy and translational selection in Saccharomyces cerevisiae. J Mol Biol (1997) 268:322-30; PMID:9159473; http://dx.doi.org/10.1006/jmbi.1997.0942
  • Tuller T, Carmi A, Vestsigian K, Navon S, Dorfan Y, Zaborske J, Pan T, Dahan O, Furman I, Pilpel Y. An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell (2010) 141:344-54; PMID:20403328; http://dx.doi.org/10.1016/j.cell.2010.03.031
  • Yarian C, Townsend H, Czestkowski W, Sochacka E, Malkiewicz AJ, Guenther R, Miskiewicz A, Agris PF. Accurate translation of the genetic code depends on tRNA modified nucleosides. J Biol Chem (2002) 277:16391-5; PMID:11861649; http://dx.doi.org/10.1074/jbc.M200253200

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.