2,475
Views
51
CrossRef citations to date
0
Altmetric
Point-of-View

Coilin: The first 25 years

, &
Pages 590-596 | Received 02 Mar 2015, Accepted 18 Mar 2015, Published online: 15 Jun 2015

References

  • Gall JG. Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol 2000; 16:273–300; PMID:11031238; http://dx.doi.org/10.1146/annurev.cellbio.16.1.273
  • Raska I, Andrade LE, Ochs RL, Chan EK, Chang CM, Roos G, Tan EM. Immunological and ultrastructural studies of the nuclear coiled body with autoimmune antibodies. Exp Cell Res 1991; 195:27–37; PMID:2055273; http://dx.doi.org/10.1016/0014-4827(91)90496-H
  • Andrade LE, Chan EK, Raska I, Peebles CL, Roos G, Tan EM. Human autoantibody to a novel protein of the nuclear coiled body: immunological characterization and cDNA cloning of p80-coilin. J Exp Med 1991; 173:1407–19; PMID:2033369; http://dx.doi.org/10.1084/jem.173.6.1407
  • Raska I, Ochs RL, Andrade LE, Chan EK, Burlingame R, Peebles C, Gruol D, Tan EM. Association between the nucleolus and the coiled body. J Struct Biol 1990; 104:120–7; PMID:2088441; http://dx.doi.org/10.1016/1047-8477(90)90066-L
  • Tuma RS, Stolk JA, Roth MB. Identification and characterization of a sphere organelle protein. J Cell Biol 1993; 122:767–73; PMID:8349728; http://dx.doi.org/10.1083/jcb.122.4.767
  • Collier S, Pendle A, Boudonck K, van Rij T, Dolan L, Shaw P. A distant coilin homologue is required for the formation of cajal bodies in Arabidopsis. Mol Biol Cell 2006; 17:2942–51; PMID:16624863; http://dx.doi.org/10.1091/mbc.E05-12-1157
  • Liu JL, Wu Z, Nizami Z, Deryusheva S, Rajendra TK, Beumer KJ, Gao H, Matera AG, Carroll D, Gall JG. Coilin is essential for Cajal body organization in Drosophila melanogaster. Mol Biol Cell 2009; 20:1661–70; PMID:19158395; http://dx.doi.org/10.1091/mbc.E08-05-0525
  • Beven AF, Simpson GG, Brown JW, Shaw PJ. The organization of spliceosomal components in the nuclei of higher plants. J Cell Sci 1995; 108 (Pt 2):509–18; PMID:7768997
  • Liu JL, Murphy C, Buszczak M, Clatterbuck S, Goodman R, Gall JG. The Drosophila melanogaster Cajal body. J Cell Biol 2006; 172:875–84; PMID:16533947; http://dx.doi.org/10.1083/jcb.200511038
  • Wu Z, Murphy C, Gall JG. Human p80-coilin is targeted to sphere organelles in the amphibian germinal vesicle. Mol Biol Cell 1994; 5:1119–27; PMID: 7532471; http://dx.doi.org/10.1091/mbc.5.10.1119
  • Bohmann K, Ferreira JA, Lamond AI. Mutational analysis of p80 coilin indicates a functional interaction between coiled bodies and the nucleolus. J Cell Biol 1995; 131:817–31; PMID:7490287; http://dx.doi.org/10.1083/jcb.131.4.817
  • Hebert MD, Matera AG. Self-association of coilin reveals a common theme in nuclear body localization. Mol Biol Cell 2000; 11:4159–71; PMID:11102515; http://dx.doi.org/10.1091/mbc.11.12.4159
  • Shanbhag R, Kurabi A, Kwan JJ, Donaldson LW. Solution structure of the carboxy-terminal Tudor domain from human Coilin. FEBS Lett 2010; 584:4351–6; PMID:20875822; http://dx.doi.org/10.1016/j.febslet.2010.09.034
  • Hebert MD, Szymczyk PW, Shpargel KB, Matera AG. Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein. Genes Dev 2001; 15:2720–9; PMID:11641277; http://dx.doi.org/10.1101/gad.908401
  • Xu H, Pillai RS, Azzouz TN, Shpargel KB, Kambach C, Hebert MD, Schümperli D, Matera AG. The C-terminal domain of coilin interacts with Sm proteins and U snRNPs. Chromosoma 2005; 114:155–66; PMID:16003501; http://dx.doi.org/10.1007/s00412-005-0003-y
  • Toyota CG, Davis MD, Cosman AM, Hebert MD. Coilin phosphorylation mediates interaction with SMN and SmB'. Chromosoma 2010; 119:205–15; PMID:19997741; http://dx.doi.org/10.1007/s00412-009-0249-x
  • Tucker KE, Berciano MT, Jacobs EY, LePage DF, Shpargel KB, Rossire JJ, Chan EK, Lafarga M, Conlon RA, Matera AG. Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product. J Cell Biol 2001; 154:293–307; PMID:11470819; http://dx.doi.org/10.1083/jcb.200104083
  • Walker MP, Tian L, Matera AG. Reduced viability, fertility and fecundity in mice lacking the cajal body marker protein, coilin. PLoS One 2009; 4:e6171; PMID:19587784; http://dx.doi.org/10.1371/journal.pone.0006171
  • Strzelecka M, Trowitzsch S, Weber G, Luhrmann R, Oates AC, Neugebauer KM. Coilin-dependent snRNP assembly is essential for zebrafish embryogenesis. Nat Struct Mol Biol 2010; 17:403–9; PMID: 20357773; http://dx.doi.org/10.1038/nsmb.1783
  • Carmo-Fonseca M, Pepperkok R, Carvalho MT, Lamond AI. Transcription-dependent colocalization of the U1, U2, U4/U6, and U5 snRNPs in coiled bodies. J Cell Biol 1992; 117:1–14; PMID:1532583; http://dx.doi.org/10.1083/jcb.117.1.1
  • Matera AG, Ward DC. Nucleoplasmic organization of small nuclear ribonucleoproteins in cultured human cells. J Cell Biol 1993; 121:715–27; PMID:8491767; http://dx.doi.org/10.1083/jcb.121.4.715
  • Schaffert N, Hossbach M, Heintzmann R, Achsel T, Luhrmann R. RNAi knockdown of hPrp31 leads to an accumulation of U4/U6 di-snRNPs in Cajal bodies. Embo J 2004; 23:3000–9; PMID:15257298; http://dx.doi.org/10.1038/sj.emboj.7600296
  • Stanek D, Neugebauer KM. Detection of snRNP assembly intermediates in Cajal bodies by fluorescence resonance energy transfer. J Cell Biol 2004; 166:1015–25; PMID:15452143; http://dx.doi.org/10.1083/jcb.200405160
  • Stanek D, Pridalova-Hnilicova J, Novotny I, Huranova M, Blazikova M, Wen X, Sapra AK, Neugebauer KM. Spliceosomal small nuclear ribonucleoprotein particles repeatedly cycle through Cajal bodies. Mol Biol Cell 2008; 19:2534–43; PMID:18367544; http://dx.doi.org/10.1091/mbc.E07-12-1259
  • Nesic D, Tanackovic G, Kramer A. A role for Cajal bodies in the final steps of U2 snRNP biogenesis. J Cell Sci 2004; 117:4423–33; PMID:15316075; http://dx.doi.org/10.1242/jcs.01308
  • Stanek D, Rader SD, Klingauf M, Neugebauer KM. Targeting of U4/U6 small nuclear RNP assembly factor SART3/p110 to Cajal bodies. J Cell Biol 2003; 160:505–16; PMID:12578909; http://dx.doi.org/10.1083/jcb.200210087
  • Darzacq X, Jady BE, Verheggen C, Kiss AM, Bertrand E, Kiss T. Cajal body-specific small nuclear RNAs: a novel class of 2'-O- methylation and pseudouridylation guide RNAs. Embo J 2002; 21:2746–56; PMID:12032087; http://dx.doi.org/10.1093/emboj/21.11.2746
  • Jady BE, Darzacq X, Tucker KE, Matera AG, Bertrand E, Kiss T. Modification of Sm small nuclear RNAs occurs in the nucleoplasmic Cajal body following import from the cytoplasm. Embo J 2003; 22:1878–88; PMID:12682020; http://dx.doi.org/10.1093/emboj/cdg187
  • Klingauf M, Stanek D, Neugebauer KM. Enhancement of U4/U6 small nuclear ribonucleoprotein particle association in Cajal bodies predicted by mathematical modeling. Mol Biol Cell 2006; 17:4972–81; PMID:16987958; http://dx.doi.org/10.1091/mbc.E06-06-0513
  • Novotny I, Blazikova M, Stanek D, Herman P, Malinsky J. In vivo kinetics of U4/U6.U5 tri-snRNP formation in Cajal bodies. Mol Biol Cell 2011; 22:513–23; PMID:21177826; http://dx.doi.org/10.1091/mbc.E10-07-0560
  • Deryusheva S, Gall JG. Small Cajal body-specific RNAs of Drosophila function in the absence of Cajal bodies. Mol Biol Cell 2009; 20:5250–9; PMID: 19846657; http://dx.doi.org/10.1091/mbc.E09-09-0777
  • Deryusheva S, Gall JG. Novel small Cajal-body-specific RNAs identified in Drosophila: probing guide RNA function. RNA 2013; 19:1802–14; PMID: 24149844; http://dx.doi.org/10.1261/rna.042028.113
  • Machyna M, Kehr S, Straube K, Kappei D, Buchholz F, Butter F, Ule J, Hertel J, Stadler P, Neugebauer KM. Global identification of coilin binding partners reveals hundreds of small non-coding RNAs that traffic through Cajal bodies. Mol Cell 2014; 56:389–99; PMID:25514182; http://dx.doi.org/10.1016/j.molcel.2014.10.004
  • Boulon S, Verheggen C, Jady BE, Girard C, Pescia C, Paul C, Ospina JK, Kiss T, Matera AG, Bordonné R, et al. PHAX and CRM1 are required sequentially to transport U3 snoRNA to nucleoli. Mol Cell 2004; 16:777–87; PMID:15574332; http://dx.doi.org/10.1016/j.molcel.2004.11.013
  • Machyna M, Heyn P, Neugebauer KM. Cajal bodies: where form meets function. Wiley Interdiscip Rev RNA 2013; 4:17–34; PMID:23042601; http://dx.doi.org/10.1002/wrna.1139
  • Konig H, Matter N, Bader R, Thiele W, Muller F. Splicing segregation: the minor spliceosome acts outside the nucleus and controls cell proliferation. Cell 2007; 131:718–29; PMID:18022366; http://dx.doi.org/10.1016/j.cell.2007.09.043
  • Novotny I, Malinova A, Stejskalova E, Mateju D, Klimesova K, Roithova A, Švéda M, Knejzlík Z, Staněk D. SART3-dependent accumulation of incomplete spliceosomal snRNPs in Cajal bodies. Cell Rep 2015; pii: S2211-1247(14)01059–6; PMID:25600876
  • Jady BE, Richard P, Bertrand E, Kiss T. Cell cycle-dependent recruitment of telomerase RNA and Cajal bodies to human telomeres. Mol Biol Cell 2006; 17:944–54; PMID:16319170; http://dx.doi.org/10.1091/mbc.E05-09-0904
  • Jady BE, Bertrand E, Kiss T. Human telomerase RNA and box H/ACA scaRNAs share a common Cajal body-specific localization signal. J Cell Biol 2004; 164:647–52; PMID:14981093; http://dx.doi.org/10.1083/jcb.200310138
  • Lukowiak AA, Narayanan A, Li ZH, Terns RM, Terns MP. The snoRNA domain of vertebrate telomerase RNA functions to localize the RNA within the nucleus. RNA 2001; 7:1833–44; PMID:11780638
  • Zhu Y, Tomlinson RL, Lukowiak AA, Terns RM, Terns MP. Telomerase RNA accumulates in Cajal bodies in human cancer cells. Mol Biol Cell 2004; 15:81–90; PMID:14528011; http://dx.doi.org/10.1091/mbc.E03-07-0525
  • Tomlinson RL, Ziegler TD, Supakorndej T, Terns RM, Terns MP. Cell cycle-regulated trafficking of human telomerase to telomeres. Mol Biol Cell 2006; 17:955–65; PMID:16339074; http://dx.doi.org/10.1091/mbc.E05-09-0903
  • Tomlinson RL, Li J, Culp BR, Terns RM, Terns MP. A Cajal body-independent pathway for telomerase trafficking in mice. Exp Cell Res 2010; 316:2797–809; PMID:20633556; http://dx.doi.org/10.1016/j.yexcr.2010.07.001
  • Tycowski KT, Shu MD, Kukoyi A, Steitz JA. A conserved WD40 protein binds the Cajal body localization signal of scaRNP particles. Mol Cell 2009; 34:47–57; PMID:19285445; http://dx.doi.org/10.1016/j.molcel.2009.02.020
  • Venteicher AS, Abreu EB, Meng Z, McCann KE, Terns RM, Veenstra TD, Terns MP, Artandi SE. A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science 2009; 323:644–8; PMID:19179534; http://dx.doi.org/10.1126/science.1165357
  • Richard P, Darzacq X, Bertrand E, Jady BE, Verheggen C, Kiss T. A common sequence motif determines the Cajal body-specific localization of box H/ACA scaRNAs. Embo J 2003; 22:4283–93; PMID: 12912925; http://dx.doi.org/10.1093/emboj/cdg394
  • Zhong F, Savage SA, Shkreli M, Giri N, Jessop L, Myers T, Chen R, Alter BP, Artandi SE. Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita. Genes Dev 2011; 25:11–6; PMID:21205863; http://dx.doi.org/10.1101/gad.2006411
  • Enwerem, II, Velma V, Broome HJ, Kuna M, Begum RA, Hebert MD. Coilin association with Box C/D scaRNA suggests a direct role for the Cajal body marker protein in scaRNP biogenesis. Biol Open 2014; 3:240–9; PMID:24659245; http://dx.doi.org/10.1242/bio.20147443
  • Mahmoudi S, Henriksson S, Weibrecht I, Smith S, Soderberg O, Stromblad S, Wiman KG, Farnebo M. WRAP53 is essential for Cajal body formation and for targeting the survival of motor neuron complex to Cajal bodies. PLoS Biol 2010; 8:e1000521; PMID:21072240; http://dx.doi.org/10.1371/journal.pbio.1000521
  • Cristofari G, Adolf E, Reichenbach P, Sikora K, Terns RM, Terns MP, Lingner J. Human telomerase RNA accumulation in Cajal bodies facilitates telomerase recruitment to telomeres and telomere elongation. Mol Cell 2007; 27:882–9; PMID:17889662; http://dx.doi.org/10.1016/j.molcel.2007.07.020
  • Freund A, Zhong FL, Venteicher AS, Meng Z, Veenstra TD, Frydman J, Artandi SE. Proteostatic control of telomerase function through TRiC-mediated folding of TCAB1. Cell 2014; 159:1389–403; PMID:25467444; http://dx.doi.org/10.1016/j.cell.2014.10.059
  • Stern JL, Zyner KG, Pickett HA, Cohen SB, Bryan TM. Telomerase recruitment requires both TCAB1 and Cajal bodies independently. Mol Cell Biol 2012; 32:2384–95; PMID:22547674; http://dx.doi.org/10.1128/MCB.00379-12
  • Zhong FL, Batista LF, Freund A, Pech MF, Venteicher AS, Artandi SE. TPP1 OB-fold domain controls telomere maintenance by recruiting telomerase to chromosome ends. Cell 2012; 150:481–94; PMID:22863003; http://dx.doi.org/10.1016/j.cell.2012.07.012
  • Chen Y, Deng Z, Jiang S, Hu Q, Liu H, Songyang Z, Ma W, Chen S, Zhao Y. Human cells lacking coilin and Cajal bodies are proficient in telomerase assembly, trafficking and telomere maintenance. Nucleic Acids Res 2015; 43:385–95; PMID:25477378; http://dx.doi.org/10.1093/nar/gku1277
  • Bartova E, Foltankova V, Legartova S, Sehnalova P, Sorokin DV, Suchankova J, Kozubek S. Coilin is rapidly recruited to UVA-induced DNA lesions and gamma-radiation affects localized movement of Cajal bodies. Nucleus 2014; 5:460–8; PMID:24859326; http://dx.doi.org/10.4161/nucl.29229
  • Cioce M, Boulon S, Matera AG, Lamond AI. UV-induced fragmentation of Cajal bodies. J Cell Biol 2006; 175:401–13; PMID:17088425; http://dx.doi.org/10.1083/jcb.200604099
  • Henriksson S, Rassoolzadeh H, Hedstrom E, Coucoravas C, Julner A, Goldstein M, Imreh G, Zhivotovsky B, Kastan MB, Helleday T, et al. The scaffold protein WRAP53beta orchestrates the ubiquitin response critical for DNA double-strand break repair. Genes Dev 2014; 28:2726–38; PMID:25512560; http://dx.doi.org/10.1101/gad.246546.114
  • Velma V, Carrero ZI, Cosman AM, Hebert MD. Coilin interacts with Ku proteins and inhibits in vitro non-homologous DNA end joining. FEBS Lett 2010; 584:4735–9; PMID:21070772; http://dx.doi.org/10.1016/j.febslet.2010.11.004
  • Gilder AS, Do PM, Carrero ZI, Cosman AM, Broome HJ, Velma V, Martinez LA, Hebert MD. Coilin participates in the suppression of RNA polymerase I in response to cisplatin-induced DNA damage. Mol Biol Cell 2011; 22:1070–9; PMID:21289084; http://dx.doi.org/10.1091/mbc.E10-08-0731
  • Velma V, Carrero ZI, Allen CB, Hebert MD. Coilin levels modulate cell cycle progression and gammaH2AX levels in etoposide treated U2OS cells. FEBS Lett 2012; 586:3404–9; PMID:22986342; http://dx.doi.org/10.1016/j.febslet.2012.07.054
  • Frey MR, Bailey AD, Weiner AM, Matera AG. Association of snRNA genes with coiled bodies is mediated by nascent snRNA transcripts. Curr Biol 1999; 9:126–35; PMID:10021385; http://dx.doi.org/10.1016/S0960-9822(99)80066-9
  • Smith KP, Carter KC, Johnson CV, Lawrence JB. U2 and U1 snRNA gene loci associate with coiled bodies. J Cell Biochem 1995; 59:473–85; PMID:8749717; http://dx.doi.org/10.1002/jcb.240590408
  • Gao L, Frey MR, Matera AG. Human genes encoding U3 snRNA associate with coiled bodies in interphase cells and are clustered on chromosome 17p11.2 in a complex inverted repeat structure. Nucleic Acids Res 1997; 25:4740–7; PMID:9365252; http://dx.doi.org/10.1093/nar/25.23.4740
  • Schul W, Adelaar B, van Driel R, de Jong L. Coiled bodies are predisposed to a spatial association with genes that contain snoRNA sequences in their introns. J Cell Biochem 1999; 75:393–403; PMID:10536363; http://dx.doi.org/10.1002/(SICI)1097-4644(19991201)75:3%3c393::AID-JCB5%3e3.0.CO;2-G
  • Schul W, van Driel R, de Jong L. Coiled bodies and U2 snRNA genes adjacent to coiled bodies are enriched in factors required for snRNA transcription. Mol Biol Cell 1998; 9:1025–36; PMID:9571237; http://dx.doi.org/10.1091/mbc.9.5.1025
  • Jacobs EY, Frey MR, Wu W, Ingledue TC, Gebuhr TC, Gao L, Marzluff WF, Matera AG. Coiled bodies preferentially associate with U4, U11, and U12 small nuclear RNA genes in interphase HeLa cells but not with U6 and U7 genes. Mol Biol Cell 1999; 10:1653–63; PMID:10233169; http://dx.doi.org/10.1091/mbc.10.5.1653
  • Shopland LS, Byron M, Stein JL, Lian JB, Stein GS, Lawrence JB. Replication-dependent histone gene expression is related to Cajal body (CB) association but does not require sustained CB contact. Mol Biol Cell 2001; 12:565–76; PMID:11251071; http://dx.doi.org/10.1091/mbc.12.3.565
  • Smith KP, Lawrence JB. Interactions of U2 gene loci and their nuclear transcripts with Cajal (coiled) bodies: evidence for PreU2 within Cajal bodies. Mol Biol Cell 2000; 11:2987–98; PMID:10982395; http://dx.doi.org/10.1091/mbc.11.9.2987
  • Frey MR, Matera AG. RNA-mediated interaction of Cajal bodies and U2 snRNA genes. J Cell Biol 2001; 154:499–509; PMID:11489914; http://dx.doi.org/10.1083/jcb.200105084
  • Dundr M, Ospina JK, Sung MH, John S, Upender M, Ried T, Hager GL, Matera AG. Actin-dependent intranuclear repositioning of an active gene locus in vivo. J Cell Biol 2007; 179:1095–103; PMID: 18070915; http://dx.doi.org/10.1083/jcb.200710058
  • Frey MR, Matera AG. Coiled bodies contain U7 small nuclear RNA and associate with specific DNA sequences in interphase human cells. Proc Natl Acad Sci U S A 1995; 92:5915–9; PMID:7597053; http://dx.doi.org/10.1073/pnas.92.13.5915
  • Shpargel KB, Ospina JK, Tucker KE, Matera AG, Hebert MD. Control of Cajal body number is mediated by the coilin C-terminus. J Cell Sci 2003; 116:303–12; PMID:12482916; http://dx.doi.org/10.1242/jcs.00211
  • Sleeman JE, Ajuh P, Lamond AI. snRNP protein expression enhances the formation of Cajal bodies containing p80-coilin and SMN. J Cell Sci 2001; 114:4407–19; PMID:11792806
  • Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 2012; 149:753–67; PMID:22579281; http://dx.doi.org/10.1016/j.cell.2012.04.017
  • Kwon I, Kato M, Xiang S, Wu L, Theodoropoulos P, Mirzaei H, Han T, Xie S, Corden JL, McKnight SL. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 2013; 155:1049–60; PMID:24267890; http://dx.doi.org/10.1016/j.cell.2013.10.033
  • Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF, et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 2012; 483:336–40; PMID: 22398450; http://dx.doi.org/10.1038/nature10879
  • Schwartz JC, Wang X, Podell ER, Cech TR. RNA seeds higher-order assembly of FUS protein. Cell Rep 2013; 5:918–25; PMID:24268778; http://dx.doi.org/10.1016/j.celrep.2013.11.017
  • Han TW, Kato M, Xie S, Wu LC, Mirzaei H, Pei J, Chen M, Xie Y, Allen J, Xiao G, et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 2012; 149:768–79; PMID:22579282; http://dx.doi.org/10.1016/j.cell.2012.04.016
  • Carmo-Fonseca M, Ferreira J, Lamond AI. Assembly of snRNP-containing coiled bodies is regulated in interphase and mitosis–evidence that the coiled body is a kinetic nuclear structure. J Cell Biol 1993; 120:841–52; PMID:7679389; http://dx.doi.org/10.1083/jcb.120.4.841
  • Weber SC, Brangwynne CP. Inverse size scaling of the nucleolus by a concentration-dependent phase transition. Curr Biol 2015; 25(5):641–6; PMID:25702583
  • Tuma RS, Roth MB. Induction of coiled body-like structures in Xenopus oocytes by U7 snRNA. Chromosoma 1999; 108:337–44; PMID:10591993; http://dx.doi.org/10.1007/s004120050385
  • Shevtsov SP, Dundr M. Nucleation of nuclear bodies by RNA. Nat Cell Biol 2011; 13:167–73; PMID: 21240286; http://dx.doi.org/10.1038/ncb2157
  • Kaiser TE, Intine RV, Dundr M. De novo formation of a subnuclear body. Science 2008; 322:1713–7; PMID:18948503; http://dx.doi.org/10.1126/science.1165216
  • Bellini M, Gall JG. Coilin can form a complex with the U7 small nuclear ribonucleoprotein. Mol Biol Cell 1998; 9:2987–3001; PMID:9763457; http://dx.doi.org/10.1091/mbc.9.10.2987
  • Makarov V, Rakitina D, Protopopova A, Yaminsky I, Arutiunian A, Love AJ, Taliansky M, Kalinina N. Plant coilin: structural characteristics and RNA-binding properties. PLoS One 2013; 8:e53571; PMID:23320094; http://dx.doi.org/10.1371/journal.pone.0053571
  • Broome HJ, Hebert MD. In vitro RNase and nucleic acid binding activities implicate coilin in U snRNA processing. PLoS One 2012; 7:e36300; PMID:22558428; http://dx.doi.org/10.1371/journal.pone.0036300
  • Broome HJ, Hebert MD. Coilin displays differential affinity for specific RNAs in vivo and is linked to telomerase RNA biogenesis. J Mol Biol 2013; 425:713–24; PMID:23274112; http://dx.doi.org/10.1016/j.jmb.2012.12.014
  • Cajal RY. Un sencillo metodo de coloracion seletiva del reticulo protoplasmatico y sus efectos en los diversos organos nerviosos de vertebrados e invertebrados. Trab Lab Invest Biol (Madrid) 1903; 2:129–221
  • Hebert MD, Shpargel KB, Ospina JK, Tucker KE, Matera AG. Coilin methylation regulates nuclear body formation. Dev Cell 2002; 3:329–37; PMID:12361597; http://dx.doi.org/10.1016/S1534-5807(02)00222-8
  • Boisvert FM, Cote J, Boulanger MC, Cleroux P, Bachand F, Autexier C, Richard S. Symmetrical dimethylarginine methylation is required for the localization of SMN in Cajal bodies and pre-mRNA splicing. J Cell Biol 2002; 159:957–69; PMID:12486110; http://dx.doi.org/10.1083/jcb.200207028
  • Tapia O, Bengoechea R, Berciano MT, Lafarga M. Nucleolar targeting of coilin is regulated by its hypomethylation state. Chromosoma 2010; 119:527–40; PMID:20449600; http://dx.doi.org/10.1007/s00412-010-0276-7
  • Gonsalvez GB, Tian L, Ospina JK, Boisvert FM, Lamond AI, Matera AG. Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins. J Cell Biol 2007; 178:733–40; PMID:17709427; http://dx.doi.org/10.1083/jcb.200702147
  • Girard C, Neel H, Bertrand E, Bordonne R. Depletion of SMN by RNA interference in HeLa cells induces defects in Cajal body formation. Nucleic Acids Res 2006; 34:2925–32; PMID:16738131; http://dx.doi.org/10.1093/nar/gkl374
  • Lemm I, Girard C, Kuhn AN, Watkins NJ, Schneider M, Bordonne R, Lührmann R. Ongoing U snRNP Biogenesis Is Required for the Integrity of Cajal Bodies. Mol Biol Cell 2006; 17:3221–31; PMID: 16687569; http://dx.doi.org/10.1091/mbc.E06-03-0247
  • Lyon CE, Bohmann K, Sleeman J, Lamond AI. Inhibition of protein dephosphorylation results in the accumulation of splicing snRNPs and coiled bodies within the nucleolus. Exp Cell Res 1997; 230:84–93; PMID:9013710; http://dx.doi.org/10.1006/excr.1996.3380
  • Sleeman J, Lyon CE, Platani M, Kreivi JP, Lamond AI. Dynamic interactions between splicing snRNPs, coiled bodies and nucleoli revealed using snRNP protein fusions to the green fluorescent protein. Exp Cell Res 1998; 243:290–304; PMID:9743589; http://dx.doi.org/10.1006/excr.1998.4135
  • Liu J, Hebert MD, Ye Y, Templeton DJ, Kung H, Matera AG. Cell cycle-dependent localization of the CDK2-cyclin E complex in Cajal (coiled) bodies. J Cell Sci 2000; 113 (Pt 9):1543–52; PMID:10751146
  • Hearst SM, Gilder AS, Negi SS, Davis MD, George EM, Whittom AA, Toyota CG, Husedzinovic A, Gruss OJ, Hebert MD. Cajal-body formation correlates with differential coilin phosphorylation in primary and transformed cell lines. J Cell Sci 2009; 122:1872–81; PMID:19435804; http://dx.doi.org/10.1242/jcs.044040
  • Broome HJ, Carrero ZI, Douglas HE, Hebert MD. Phosphorylation regulates coilin activity and RNA association. Biol Open 2013; 2:407–15; PMID: 23616925; http://dx.doi.org/10.1242/bio.20133863
  • Carrero ZI, Velma V, Douglas HE, Hebert MD. Coilin phosphomutants disrupt Cajal body formation, reduce cell proliferation and produce a distinct coilin degradation product. PLoS One 2011; 6:e25743; PMID:21991343; http://dx.doi.org/10.1371/journal.pone.0025743
  • Sun J, Xu H, Subramony SH, Hebert MD. Interactions between coilin and PIASy partially link Cajal bodies to PML bodies. J Cell Sci 2005; 118:4995–5003; PMID:16219678; http://dx.doi.org/10.1242/jcs.02613
  • Isaac C, Yang Y, Meier UT. Nopp140 functions as a molecular link between the nucleolus and the coiled bodies. J Cell Biol 1998; 142:319–29; PMID:9679133; http://dx.doi.org/10.1083/jcb.142.2.319
  • Santama N, Ogg SC, Malekkou A, Zographos SE, Weis K, Lamond AI. Characterization of hCINAP, a novel coilin-interacting protein encoded by a transcript from the transcription factor TAFIID32 locus. J Biol Chem 2005; 280:36429–41; PMID:16079131; http://dx.doi.org/10.1074/jbc.M501982200
  • Xu H, Hebert MD. A novel EB-1/AIDA-1 isoform, AIDA-1c, interacts with the Cajal body protein coilin. BMC Cell Biol 2005; 6:23; PMID:15862129; http://dx.doi.org/10.1186/1471-2121-6-23

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.