1,910
Views
22
CrossRef citations to date
0
Altmetric
Research Paper

The role of RNA conformation in RNA-protein recognition

&
Pages 720-727 | Received 09 Feb 2015, Accepted 08 Apr 2015, Published online: 25 Jul 2015

References

  • Stefl R, Skrisovska L, Allain FH. RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle. EMBO Rep 2005; 6:33-8; PMID:15643449; http://dx.doi.org/10.1038/sj.embor.7400325
  • Glisovic T, Bachorik JL, Yong J, Dreyfuss G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 2008; 582:1977-86; PMID:18342629; http://dx.doi.org/10.1016/j.febslet.2008.03.004
  • Masuda K, Kuwano Y, Nishida K, Rokutan K, Imoto I. NF90 in posttranscriptional gene regulation and microRNA biogenesis. Int J Mol Sci 2013; 14:17111-21; PMID:23965975; http://dx.doi.org/10.3390/ijms140817111
  • Ankö ML, Neugebauer KM. RNA-protein interactions in vivo: global gets specific. Trends Biochem Sci 2012; 37:255-62; PMID:22425269; http://dx.doi.org/10.1016/j.tibs.2012.02.005
  • Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins. Nat Rev Genet 2014; 15:829-45; PMID:25365966; http://dx.doi.org/10.1038/nrg3813
  • Cléry A, Blatter M, Allain FH. RNA recognition motifs: boring? Not quite. Curr Opin Struct Biol 2008; 18:290-8; http://dx.doi.org/10.1016/j.sbi.2008.04.002
  • Muto Y, Yokoyama S. Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems. Wiley Interdiscip Rev RNA 2012; 3:229-46; PMID:22278943; http://dx.doi.org/10.1002/wrna.1107
  • Maris C, Dominguez C, Allain FH. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J 2005; 272:2118-31; PMID:15853797; http://dx.doi.org/10.1111/j.1742-4658.2005.04653.x
  • Valverde R, Edwards L, Regan L. Structure and function of KH domains. FEBS J 2008; 275:2712-26; PMID:18422648; http://dx.doi.org/10.1111/j.1742-4658.2008.06411.x
  • Masliah G, Barraud P, Allain FH. RNA recognition by double-stranded RNA binding domains: a matter of shape and sequence. Cell Mol Life Sci 2013; 70:1875-95; PMID:22918483
  • Chen Y, Varani G. Protein families and RNA recognition. FEBS J 2005; 272:2088-97; PMID:15853794; http://dx.doi.org/10.1111/j.1742-4658.2005.04650.x
  • Lunde BM, Moore C, Varani G. RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 2007; 8:479-90; PMID:17473849; http://dx.doi.org/10.1038/nrm2178
  • Brown RS. Zinc finger proteins: getting a grip on RNA. Curr Opin Struct Biol 2005; 15:94-8; PMID:15718139; http://dx.doi.org/10.1016/j.sbi.2005.01.006
  • Wang X, McLachlan J, Zamore PD, Hall TM. Modular recognition of RNA by a human pumilio-homology domain. Cell 2002; 110:501-12; PMID:12202039; http://dx.doi.org/10.1016/S0092-8674(02)00873-5
  • Treger M, Westhof E. Statistical analysis of atomic contacts at RNA-protein interfaces. J Mol Recognit 2001; 14:199-214; PMID:11500966; http://dx.doi.org/10.1002/jmr.534
  • Jeong E, Kim H, Lee SW, Han K. Discovering the interaction propensities of amino acids and nucleotides from protein-RNA complexes. Mol Cells 2003; 16:161-7; PMID:14651256
  • Phipps KR, Li H. Protein-RNA contacts at crystal packing surfaces. Proteins 2007; 67:121-7; PMID:17211891; http://dx.doi.org/10.1002/prot.21230
  • Ellis JJ, Broom M, Jones S. Protein-RNA interactions: structural analysis and functional classes. Proteins 2007; 66:903-11; PMID:17186525; http://dx.doi.org/10.1002/prot.21211
  • Bahadur RP, Zacharias M, Janin J. Dissecting protein-RNA recognition sites. Nucleic Acids Res 2008; 36:2705-16; PMID:18353859; http://dx.doi.org/10.1093/nar/gkn102
  • Gupta A, Gribskov M. The role of RNA sequence and structure in RNA–protein interactions. J Mol Biol 2011; 409:574-87; PMID:21514302; http://dx.doi.org/10.1016/j.jmb.2011.04.007
  • Iwakiri J, Tateishi H, Chakraborty A, Patil P, Kenmochi N. Dissecting the protein-RNA interface: the role of protein surface shapes and RNA secondary structures in protein-RNA recognition. Nucleic Acids Res 2012; 40:3299-306; PMID:22199255; http://dx.doi.org/10.1093/nar/gkr1225
  • Nagai K. RNA-protein complexes. Curr Opin Struct Biol 1996; 6:53-61; PMID:8696973; http://dx.doi.org/10.1016/S0959-440X(96)80095-9
  • Jones S, Daley DT, Luscombe NM, Berman HM, Thornton JM. Protein-RNA interactions: a structural analysis. Nucleic Acids Res 2001; 29:943-54; PMID:11160927; http://dx.doi.org/10.1093/nar/29.4.943
  • Cusack S. RNA-protein complexes. Curr Opin Struct Biol 1999; 9:66-73; PMID:10400475; http://dx.doi.org/10.1016/S0959-440X(99)80009-8
  • Valegård K, Murray JB, Stockley PG, Stonehouse NJ, Liljas L. Crystal structure of an RNA bacteriophage coat protein-operator complex. Nature 1994; 371:623-6; http://dx.doi.org/10.1038/371623a0
  • Murthy VL, Srinivasan R, Draper DE, Rose GD. A complete conformational map for RNA. J Mol Biol 1999; 291:313-27; PMID:10438623; http://dx.doi.org/10.1006/jmbi.1999.2958
  • Schneider B, Morávek Z, Berman HM. RNA conformational classes. Nucleic Acids Res 2004; 32:1666-77; PMID:15016910; http://dx.doi.org/10.1093/nar/gkh333
  • Daubner GM, Cléry A, Jayne S, Stevenin J, Allain FH. A syn-anti conformational difference allows SRSF2 to recognize guanines and cytosines equally well. EMBO J 2012; 31:162-74; PMID:22002536; http://dx.doi.org/10.1038/emboj.2011.367
  • Daubner GM, Cléry A, Allain FH. RRM-RNA recognition: NMR or crystallography…and new findings. Curr Opin Struct Biol 2013; 23:100-8; PMID:23253355; http://dx.doi.org/10.1016/j.sbi.2012.11.006
  • Wang X, Tanaka Hall TM. Structural basis for recognition of AU-rich element RNA by the HuD protein. Nat Struct Biol 2001; 8:141-5; PMID:11175903; http://dx.doi.org/10.1038/84131
  • David-Eden H, Mankin AS, Mandel-Gutfreund Y. Structural signatures of antibiotic binding sites on the ribosome. Nucleic Acids Res 2010; 38:5982-94; PMID:20494981; http://dx.doi.org/10.1093/nar/gkq411
  • Sokoloski JE, Godfrey SA, Dombrowski SE, Bevilacqua PC. Prevalence of syn nucleobases in the active sites of functional RNAs. RNA 2011; 17:1775-87; PMID:21873463; http://dx.doi.org/10.1261/rna.2759911
  • Kligun E, Mandel-Gutfreund Y. Conformational readout of RNA by small ligands. RNA Biol 2013; 10:982-90; PMID:23618839; http://dx.doi.org/10.4161/rna.24682
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403-10; PMID:2231712; http://dx.doi.org/10.1016/S0022-2836(05)80360-2
  • Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673-80; PMID:7984417; http://dx.doi.org/10.1093/nar/22.22.4673
  • Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, et al. The Pfam protein families database. Nucleic Acids Res 2012; 40:D290-301; PMID:22127870; http://dx.doi.org/10.1093/nar/gkr1065
  • Cazals F, Proust F, Bahadur RP, Janin J. Revisiting the Voronoi description of protein-protein interfaces. Protein Sci 2006; 15:2082-92; PMID:16943442; http://dx.doi.org/10.1110/ps.062245906
  • Gendron P, Lemieux S, Major F. Quantitative analysis of nucleic acid three-dimensional structures. J Mol Biol 2001; 308:919-36; PMID:11352582; http://dx.doi.org/10.1006/jmbi.2001.4626
  • Banatao DR, Altman RB, Klein TE. Microenvironment analysis and identification of magnesium binding sites in RNA. Nucleic Acids Res 2003; 31:4450-60; PMID:12888505; http://dx.doi.org/10.1093/nar/gkg471
  • Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J. TM4 microarray software suite. Methods Enzymol 2006; 411:134-93; PMID:16939790; http://dx.doi.org/10.1016/S0076-6879(06)11009-5
  • McDonald IK, Thornton JM. Satisfying hydrogen bonding potential in proteins. J Mol Biol 1994; 238:777-93; PMID:8182748; http://dx.doi.org/10.1006/jmbi.1994.1334
  • Messias AC, Sattler M. Structural basis of single-stranded RNA recognition. Acc Chem Res 2004; 37:279-87; PMID:15147168; http://dx.doi.org/10.1021/ar030034m
  • Auweter SD, Oberstrass FC, Allain FH. Sequence-specific binding of single-stranded RNA: is there a code for recognition? Nucleic Acids Res 2006; 34:4943-59; PMID:16982642; http://dx.doi.org/10.1093/nar/gkl620
  • Bloomfield VA, Crothers DM, Ignacio Tinoco J. Nucleic Acids: Structures, properties, and functions. University Science Books, 2000.
  • Kowalak JA, Bruenger E, McCloskey JA. Posttranscriptional modification of the central loop of domain V in Escherichia coli 23 S ribosomal RNA. J Biol Chem 1995; 270:17758-64; PMID:7629075; http://dx.doi.org/10.1074/jbc.270.30.17758
  • Dalluge JJ, Hashizume T, Sopchik AE, McCloskey JA, Davis DR. Conformational flexibility in RNA: the role of dihydrouridine. Nucleic Acids Res 1996; 24:1073-9; PMID:8604341; http://dx.doi.org/10.1093/nar/24.6.1073
  • Mortimer SA, Weeks KM. C2'-endo nucleotides as molecular timers suggested by the folding of an RNA domain. Proc Natl Acad Sci U S A 2009; 106:15622-7; PMID:19717440; http://dx.doi.org/10.1073/pnas.0901319106
  • LaGrandeur TE, Hüttenhofer A, Noller HF, Pace NR. Phylogenetic comparative chemical footprint analysis of the interaction between ribonuclease P RNA and tRNA. EMBO J 1994; 13:3945-52; PMID:7521296
  • Leontis NB, Westhof E. A common motif organizes the structure of multi-helix loops in 16 S and 23 S ribosomal RNAs. J Mol Biol 1998; 283:571-83; PMID:9784367; http://dx.doi.org/10.1006/jmbi.1998.2106
  • Kolev NG, Steitz JA. In vivo assembly of functional U7 snRNP requires RNA backbone flexibility within the Sm-binding site. Nat Struct Mol Biol 2006; 13:347-53; PMID:16547514; http://dx.doi.org/10.1038/nsmb1075
  • Hall TM. Multiple modes of RNA recognition by zinc finger proteins. Curr Opin Struct Biol 2005; 15:367-73; PMID:15963892; http://dx.doi.org/10.1016/j.sbi.2005.04.004
  • Lüking A, Stahl U, Schmidt U. The protein family of RNA helicases. Crit Rev Biochem Mol Biol 1998; 33:259-96; PMID:9747670; http://dx.doi.org/10.1080/10409239891204233
  • Marintchev A. Roles of helicases in translation initiation: a mechanistic view. Biochim Biophys Acta 2013; 1829:799-809; PMID:23337854; http://dx.doi.org/10.1016/j.bbagrm.2013.01.005
  • Bycroft M, Hubbard TJ, Proctor M, Freund SM, Murzin AG. The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold. Cell 1997; 88:235-42; PMID:9008164; http://dx.doi.org/10.1016/S0092-8674(00)81844-9
  • Schubert M, Edge RE, Lario P, Cook MA, Strynadka NC, Mackie GA, McIntosh LP. Structural characterization of the RNase E S1 domain and identification of its oligonucleotide-binding and dimerization interfaces. J Mol Biol 2004; 341:37-54; PMID:15312761; http://dx.doi.org/10.1016/j.jmb.2004.05.061
  • Burd CG, Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins. Science 1994; 265:615-21; PMID:8036511; http://dx.doi.org/10.1126/science.8036511
  • Lorković ZJ, Barta A. Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res 2002; 30:623-35; PMID:11809873; http://dx.doi.org/10.1093/nar/30.3.623
  • Chen Y, Varani G. Finding the missing code of RNA recognition by PUF proteins. Chem Biol 2011; 18:821-3; PMID:21802002; http://dx.doi.org/10.1016/j.chembiol.2011.07.001
  • Hudson BP, Martinez-Yamout MA, Dyson HJ, Wright PE. Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nat Struct Mol Biol 2004; 11:257-64; PMID:14981510; http://dx.doi.org/10.1038/nsmb738
  • Allers J, Shamoo Y. Structure-based analysis of protein-RNA interactions using the program ENTANGLE. J Mol Biol 2001; 311:75-86; PMID:11469858; http://dx.doi.org/10.1006/jmbi.2001.4857
  • Sengoku T, Nureki O, Nakamura A, Kobayashi S, Yokoyama S. Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 2006; 125:287-300; PMID:16630817; http://dx.doi.org/10.1016/j.cell.2006.01.054