1,018
Views
27
CrossRef citations to date
0
Altmetric
Research Paper

A multistress responsive type I toxin-antitoxin system: bsrE/SR5 from the B. subtilis chromosome

, , , , , & show all
Pages 511-523 | Received 20 Nov 2015, Accepted 10 Feb 2016, Published online: 18 Apr 2016

References

  • Fozo EM, Makarova KS, Shabalina SA, Yutin N, Koonin EV, Storz G. Abundance of type I toxin-antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucleic Acids Res 2010; 38:3743-59; PMID:20156992; http://dx.doi.org/10.1093/nar/gkq054
  • Gerdes K, Wagner EGH. RNA antitoxins. Curr Opin Microbiol 2007; 10:117-24; PMID:17376733; http://dx.doi.org/10.1016/j.mib.2007.03.003
  • Brantl S. Bacterial type I toxin-antitoxin systems. RNA Biol 2012; 9:1488-90; PMID:23324552; http://dx.doi.org/10.4161/rna.23045
  • Brantl S, Jahn N. sRNAs in bacterial type I and type III toxin/antitoxin systems. FEMS Microbiol Rev 2015; 39:413-27; PMID:25808661; http://dx.doi.org/10.1093/femsre/fuv003
  • Weaver KE. The par toxin-antitoxin system from Enterococcus faecalis plasmid pAD1 and its chromosomal homologs. RNA Biol 2012; 9:1498-503; PMID:23059908; http://dx.doi.org/10.4161/rna.22311
  • Weaver KE. The type I toxin-antitoxin par locus from Enterococcus faecalis plasmid pAD1: RNA regulation by both cis- and trans-acting elements. Plasmid 2014; 78:65-70; PMID:25312777; http://dx.doi.org/10.1016/j.plasmid.2014.10.001
  • Gerdes K, Gultyaev AP, Franch T, Pedersen K, Mikkelsen ND. Antisense RNA-regulated programmed cell death. Annu Rev Genet 1997; 31:1-31; PMID:9442888; http://dx.doi.org/10.1146/annurev.genet.31.1.1
  • Silvaggi JM, Perkins JB, Losick R. Small untranslated RNA antitoxin in Bacillus subtilis. J Bacteriol 2005; 187:6641-50; PMID:16166525; http://dx.doi.org/10.1128/JB.187.19.6641-6650.2005
  • Wagner EGH, Unoson C. The toxin-antitoxin system tisB-istR1. Expression, regulation and biological role in persister phenotypes. RNA Biol 2012; 9:1513-9; PMID:23093802; http://dx.doi.org/10.4161/rna.22578
  • Fozo EM. New type I toxin-antitoxin families from “wild” and laboratory strains of E. coli. Ibs-Sib, ShoB-OhsC and Zor-Orz. RNA Biol 2012; 9:1504-12; PMID:23182878; http://dx.doi.org/10.4161/rna.22568
  • Jahn N, Preis H, Wiedemann C, Brantl S. BsrG/SR4 from Bacillus subtilis – the first temperature-dependent type I toxin-antitoxin system. Mol Microbiol 2012; 83:579-98; PMID:22229825; http://dx.doi.org/10.1111/j.1365-2958.2011.07952.x
  • Kawano M. Divergently overlapping cis-encoded antisense RNA regulating toxin-antitoxin systems from E. coli: hok/sok, ldr/rdl, symE/symR. RNA Biol 2012; 9:1520-27; PMID:23131729; http://dx.doi.org/10.4161/rna.22757
  • Kawano M, Aravind L, Storz G. An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. Mol Microbiol 2007; 64:738-54; PMID:17462020; http://dx.doi.org/10.1111/j.1365-2958.2007.05688.x
  • Weel-Sneve R, Kristiansen K, Odsbu I, Dalhus B, Booth J, Rognes T, Skarstad K, Bjoras M. Single transmembrane peptide DinQ modulates membrane-dependent activities. PLoS Genet 2013; 8:e1003260; PMID:23408903; http://dx.doi.org/10.1371/journal.pgen.1003260
  • Guo Y, Quiroga C, Chen Q, McAnulty MJ, Benedik MJ, Wood TK, Wang X. RalR (a DNase) and RalA (a small RNA) form a type I toxin-antitoxin system in Escherichia coli. Nucleic Acids Res 2014; 42:6448-62; PMID:24748661; http://dx.doi.org/10.1093/nar/gku279
  • Dörr T, Vulic M, Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 2010; 8:e1000317; PMID:20186264; http://dx.doi.org/10.1371/journal.pbio.1000317
  • Gurnev PA, Ortenberg R, Dörr T, Lewis K. Persister-promoting bacterial toxin TisB produces anion-selective pores in planar lipid bilayers. FEBS Lett 2012; 586:2529-34; PMID:22728134; http://dx.doi.org/10.1016/j.febslet.2012.06.021
  • Verstraeten N, Knapen WJ, Kint CI, Liebens V, van den Bergh B, Dewachter L, Michiels JE, Fu Q, David CC, Fierro AC, et al. Obg and membrane polarization are part of a microbial bet-hedging strategy that leads to antibiotic tolerance. Mol Cell 2015; 59:9-21; PMID:26051177; http://dx.doi.org/10.1016/j.molcel.2015.05.011
  • Koyanagi S, Lévesque CM. Characterization of a Streptococcus mutans intergenic region containing a small toxin peptide and its cis-encoded antisense small RNA antitoxin. PLoS One 2013; 8:e54291; PMID:23326602; http://dx.doi.org/10.1371/journal.pone.0054291
  • Yamaguchi Y, Park J-H, Inouye M. Toxin-Antitoxin systems in bacteria and archaea. Annu Rev Genet 2011; 45:61-79; PMID:22060041; http://dx.doi.org/10.1146/annurev-genet-110410-132412
  • Durand S, Jahn N, Condon C, Brantl S. Type I toxin-antitoxin systems in Bacillus subtilis. RNA Biol 2012; 9:1491-7; PMID:23059907; http://dx.doi.org/10.4161/rna.22358
  • Durand S, Gilet L, Condon C. The essential function of B. subtilis RNase III is to silence foreign toxic genes. PLoS Genet 2012; 8:e1003181; PMID:23300471; http://dx.doi.org/10.1371/journal.pgen.1003181
  • Jahn N, Brantl S. One antitoxin – two functions: SR4 controls toxin mRNA decay and translation. Nucleic Acids Res 2013; 41:9870-80; PMID:23969414; http://dx.doi.org/10.1093/nar/gkt735
  • Jahn N, Brantl S, Strahl H. Against the mainstream: The membrane associated type I toxin BsrG from Bacillus subtilis interferes with cell envelope biosynthesis without increasing membrane permeability. Mol Microbiol 2015; 98:651-66; PMID:26234942; http://dx.doi.org/10.1111/mmi.13146
  • Meißner C, Jahn N, Brantl S. In vitro characterization of the type I toxin-antitoxin system bsrE/SR5 from Bacillus subtilis. J Biol Chem 2016; 291:560-71; http://dx.doi.org/10.1074/jbc.M115.697524
  • Irnov I, Sharma CM, Vogel J, Winkler WC. Identification of regulatory RNAs in Bacillus subtilis. Nucleic Acids Res 2010; 38:6637-51; PMID:20525796; http://dx.doi.org/10.1093/nar/gkq454
  • Brantl S. Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr Opin Microbiol 2007; 10:102-9; PMID:17387036; http://dx.doi.org/10.1016/j.mib.2007.03.012
  • Brantl S. Acting antisense: plasmid- and chromosome-encoded sRNAs from Gram-positive bacteria. Future Microbiol 2012; 7:853-71; PMID:22827307; http://dx.doi.org/10.2217/fmb.12.59
  • Pinel-Marie ML, Brielle R, Felden B. Dual toxic-peptide-coding Staphylococcus aureus RNA under antisense regulation targets host cells and bacterial rivals unequally. Cell Rep 2014; 7:424-35; PMID:24703849; http://dx.doi.org/10.1016/j.celrep.2014.03.012
  • Weaver KE, Ehli EA, Nelson JS, Patel S. Antisense RNA regulation by stable complex formation in the Enterococcus faecalis plasmid pAD1 par addiction system. J Bacteriol 2004; 186:6400-8; PMID:15375120; http://dx.doi.org/10.1128/JB.186.19.6400-6408.2004
  • Gerdes K, Nielsen A, Thorsted P, Wagner EGH. Mechanism of killer gene activation. Antisense RNA-dependent RNase III cleavage ensures rapid turn-over of the stable hok, srnB and pndA effector messenger RNAs. J Mol Biol 1992; 226:637-49; PMID:1380562; http://dx.doi.org/10.1016/0022-2836(92)90621-P
  • Dambach MC, Winkler WC. Association of RNAs with B. subtilis Hfq. PLoS one 2013; 8:e55156; PMID:23457461; http://dx.doi.org/10.1371/journal.pone.0055156
  • Shababian K, Jamalli A, Zig L, Putzer H. RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis. EMBO J 2009; 28:3523-33; PMID:19779461; http://dx.doi.org/10.1038/emboj.2009.283
  • Even S, Pellegrini O, Zig L, Labas V, Vinh J, Bréchemmier-Baey D, Putzer H. Ribonucleases J1 and J2: two novel endoribonucleases in B. subtilis with functional homology to E. coli RNase E. Nucleic Acids Res 2005; 33:2141-452; PMID:15831787; http://dx.doi.org/10.1093/nar/gki505
  • Laalami S, Bessières P, Rocca A, Zig L, Nicolas P, Putzer H. Bacillus subtilis RNase Y activity in vivo analysed by tiling microarrays. PLoS One 2013; 8:e54062; PMID:23326572; http://dx.doi.org/10.1371/journal.pone.0054062
  • Liu B, Deikus G, Bree A, Durand S, Kearns DB, Bechhofer DH. Global analysis of mRNA decay intermediates in Bacillus subtilis wild-type and polynucleotide phosphorylase-deletion strains. Mol Microbiol 2014; 94:41-55; PMID:25099370; http://dx.doi.org/10.1111/mmi.12748
  • Vogel J, Argaman L, Wagner EG, Altuvia S. The small RNA IstR inhibits synthesis of an SOS-induced toxic peptide. Curr Biol 2004; 14:2271-6; PMID:15620655; http://dx.doi.org/10.1016/j.cub.2004.12.003
  • Gerdes K, Christensen SK, Løbner-Olesen A. Prokaryotic toxin-antitoxin stress response loci. Nat Rev Microbiol 2005; 3:371-82; PMID:15864262; http://dx.doi.org/10.1038/nrmicro1147
  • Hecker M, Pané-Farré J, Völker U. SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. Annu Rev Microbiol 2007; 61:215-36; PMID:18035607; http://dx.doi.org/10.1146/annurev.micro.61.080706.093445
  • Seydlová G, Halada P, Fiser R, Toman O, Ulrych A, Svobodová J. DnaK and GroEL chaperones are recruited to the Bacillus subtilis membrane after short-term ethanol stress. J Appl Microbiol 2012; 112:765-74; PMID:22268681; http://dx.doi.org/10.1111/j.1365-2672.2012.05238.x
  • Jahn N, Brantl S. Heat shock induced refolding entails rapid degradation of bsrG toxin mRNA by RNases Y and J1. Microbiology 2016; PMID:26802042; http://dx.doi.org/10.1099/mic.0.000247
  • Heidrich N, Chinali A, Gerth U, Brantl S. The small untranslated RNA SR1 from the B. subtilis genome is involved in the regulation of arginine catabolism. Mol Microbiol 2006; 62:520-36; PMID:17020585; http://dx.doi.org/10.1111/j.1365-2958.2006.05384.x
  • Gimpel M, Heidrich N, Mäder U, Krügel H, Brantl S. A dual-function sRNA from Bacillus subtilis: SR1 acts as a peptide-encoding mRNA on the gapA operon. Mol Microbiol 2010; 76:990-1009; PMID:20444087; http://dx.doi.org/10.1111/j.1365-2958.2010.07158.x
  • Licht A, Preis S, Brantl S. Implication of CcpN in the regulation of a novel untranslated RNA (SR1) in B. subtilis. Mol Microbiol 2005; 58:189-206; PMID:16164558; http://dx.doi.org/10.1111/j.1365-2958.2005.04810.x
  • Gimpel M, Brantl S. Construction of a modular plasmid family for chromosomal integration in Bacillus subtilis. J Microbiol Methods 2012; 91:312-7; PMID:22982324; http://dx.doi.org/10.1016/j.mimet.2012.09.003
  • Brantl S, Behnke D. The amount of RepR protein determines the copy number of plasmid pIP501. J Bacteriol 1992; 174:5475-8; PMID:1644777
  • Heidrich N, Moll I, Brantl S. In vitro analysis of the interaction between the small RNA SR1 and its primary target ahrC mRNA. Nucleic Acids Res 2007; 35:4331-46; PMID:17576690; http://dx.doi.org/10.1093/nar/gkm439

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.