1,081
Views
6
CrossRef citations to date
0
Altmetric
Research Paper

Compartmentalization of functions and predicted miRNA regulation among contiguous regions of the nematode intestine

, , , , &
Pages 1335-1352 | Received 21 Dec 2015, Accepted 10 Mar 2016, Published online: 16 Mar 2017

References

  • Yin Y, Martin J, Abubucker S, Scott AL, McCarter JP, Wilson RK, Jasmer DP, Mitreva M. Intestinal transcriptomes of nematodes: comparison of the parasites Ascaris suum and Haemonchus contortus with the free-living Caenorhabditis elegans. PLoS Negl Trop Dis 2008; 2:e269; PMID:18682827; https://doi.org/10.1371/journal.pntd.0000269
  • Jasmer DP, Lahmers KK, Brown WC. Haemonchus contortus intestine: a prominent source of mucosal antigens. Parasite immunology 2007; 29:139-51; PMID:17266741; https://doi.org/10.1111/j.1365-3024.2006.00928.x
  • Buck AH, Coakley G, Simbari F, McSorley HJ, Quintana JF, Le Bihan T, Kumar S, Abreu-Goodger C, Lear M, Harcus Y, et al. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat Commun 2014; 5:5488; PMID:25421927; https://doi.org/10.1038/ncomms6488
  • Jasmer DP, Perryman LE, Conder GA, Crow S, McGuire T. Protective immunity to Haemonchus contortus induced by immunoaffinity isolated antigens that share a phylogenetically conserved carbohydrate gut surface epitope. J Immunol 1993; 151:5450-60; PMID:7693812
  • Smith WD. Protection in lambs immunised with Haemonchus contortus gut membrane proteins. Res Vet Sci 1993; 54:94-101; PMID:8434155; https://doi.org/10.1016/0034-5288(93)90017-A
  • Smith TS, Munn EA, Graham M, Tavernor AS, Greenwood CA. Purification and evaluation of the integral membrane protein H11 as a protective antigen against Haemonchus contortus. Int J Parasitol 1993; 23:271-80; PMID:8496010; https://doi.org/10.1016/0020-7519(93)90150-W
  • Hotez PJ, Bethony JM, Diemert DJ, Pearson M, Loukas A. Developing vaccines to combat hookworm infection and intestinal schistosomiasis. Nat Rev Microbiol 2010; 8:814-26; PMID:20948553; https://doi.org/10.1038/nrmicro2438
  • Borgers M, De Nollin S. Ultrastructural changes in Ascaris suum intestine after mebendazole treatment in vivo. J Parasitol 1975; 61:110-22; PMID:1117352; https://doi.org/10.2307/3279120
  • Borgers M, De Nollin S, De Brabander M, Thienpont D. Influence of the anthelmintic mebendazole on microtubules and intracellular organelle movement in nematode intestinal cells. Am J Vet Res 1975; 36:1153-66; PMID:1171646
  • Jasmer DP, Yao C, Rehman A, Johnson S. Multiple lethal effects induced by a benzimidazole anthelmintic in the anterior intestine of the nematode Haemonchus contortus. Mol Biochem Parasitol 2000; 105:81-90; PMID:10613701; https://doi.org/10.1016/S0166-6851(99)00169-3
  • Hu Y, Aroian RV. Bacterial pore-forming proteins as anthelmintics. Invert Neurosci 2012; 12:37-41; PMID:22562659; https://doi.org/10.1007/s10158-012-0135-8
  • Fukushige T, Goszczynski B, Yan J, McGhee JD. Transcriptional control and patterning of the pho-1 gene, an essential acid phosphatase expressed in the C. elegans intestine. Dev Biol 2005; 279:446-61; PMID:15733671; https://doi.org/10.1016/j.ydbio.2004.12.012
  • McGhee JD. The Caenorhabditis elegans intestine. Wiley Interdiscip Rev Dev Biol 2013; 2:347-67; PMID:23799580; https://doi.org/10.1002/wdev.93
  • Rosa BA, Jasmer DP, Mitreva M. Genome-wide tissue-specific gene expression, co-expression and regulation of co-expressed genes in adult nematode Ascaris suum. PLoS Negl Trop Dis 2014; 8:e2678; PMID:24516681; https://doi.org/10.1371/journal.pntd.0002678
  • Jasmer DP, Rosa BA, Mitreva M. Peptidases compartmentalized to the Ascaris suum intestinal lumen and apical intestinal membrane. PLoS Negl Trop Dis 2015; 9:e3375; PMID:25569475; https://doi.org/10.1371/journal.pntd.0003375
  • Rosa BA, Townsend R, Jasmer DP, Mitreva M. Functional and phylogenetic characterization of proteins detected in various nematode intestinal compartments. Mol Cell Proteomics 2015; 14:812-27; PMID:25609831; https://doi.org/10.1074/mcp.M114.046227
  • Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 2012; 13:271-82; PMID:22411466; https://doi.org/10.1038/nrg3162
  • Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 2008; 455:1124-8; PMID:18806776; https://doi.org/10.1038/nature07299
  • Cloonan N. Re-thinking miRNA-mRNA interactions: intertwining issues confound target discovery. Bioessays 2015; 37:379-88; PMID:25683051; https://doi.org/10.1002/bies.201400191
  • Kim Y, Kim VN. MicroRNA factory: RISC assembly from precursor microRNAs. Mol Cell 2012; 46:384-6; PMID:22633486; https://doi.org/10.1016/j.molcel.2012.05.012
  • Kudlow BA, Zhang L, Han M. Systematic analysis of tissue-restricted miRISCs reveals a broad role for microRNAs in suppressing basal activity of the C. elegans pathogen response. Mol Cell 2012; 46:530-41; PMID:22503424; https://doi.org/10.1016/j.molcel.2012.03.011
  • Wang J, Czech B, Crunk A, Wallace A, Mitreva M, Hannon GJ, Davis RE. Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles. Genome Res 2011; 21:1462-77; PMID:21685128; https://doi.org/10.1101/gr.121426.111
  • Tritten L, Burkman E, Moorhead A, Satti M, Geary J, Mackenzie C, Geary T. Detection of circulating parasite-derived microRNAs in filarial infections. PLoS Negl Trop Dis 2014; 8:e2971; PMID:25033073; https://doi.org/10.1371/journal.pntd.0002971
  • Jex AR, Liu S, Li B, Young ND, Hall RS, Li Y, Yang L, Zeng N, Xu X, Xiong Z, et al. Ascaris suum draft genome. Nature 2011; 479:529-33; PMID:22031327; https://doi.org/10.1038/nature10553
  • Pukkila-Worley R, Ausubel FM. Immune defense mechanisms in the Caenorhabditis elegans intestinal epithelium. Curr Opin Immunol 2012; 24:3-9; PMID:22236697; https://doi.org/10.1016/j.coi.2011.10.004
  • Los FC, Randis TM, Aroian RV, Ratner AJ. Role of pore-forming toxins in bacterial infectious diseases. Microbiol Mol Biol Rev 2013; 77:173-207; PMID:23699254; https://doi.org/10.1128/MMBR.00052-12
  • Gentner HW, Castro GA. Effect of antiserum on maltase from intestinal microvillous membranes of Ascaris suum. J Parasitol 1974; 60:110-6; PMID:4205468; https://doi.org/10.2307/3278687
  • Williamson AL, Brindley PJ, Knox DP, Hotez PJ, Loukas A. Digestive proteases of blood-feeding nematodes. Trends Parasitol 2003; 19:417-23; PMID:12957519; https://doi.org/10.1016/S1471-4922(03)00189-2
  • Richardson SJ. Cell and molecular biology of transthyretin and thyroid hormones. Int Rev Cytol 2007; 258:137-93; PMID:17338921; https://doi.org/10.1016/S0074-7696(07)58003-4
  • Chehayeb JF, Robertson AP, Martin RJ, Geary TG. Proteomic analysis of adult Ascaris suum fluid compartments and secretory products. PLoS Negl Trop Dis 2014; 8:e2939; PMID:24901219; https://doi.org/10.1371/journal.pntd.0002939
  • Kimble J, Sharrock WJ. Tissue-specific synthesis of yolk proteins in Caenorhabditis elegans. Dev Biol 1983; 96:189-96; PMID:6825952; https://doi.org/10.1016/0012-1606(83)90322-6
  • Wang X, Li W, Zhao D, Liu B, Shi Y, Chen B, Yang H, Guo P, Geng X, Shang Z, et al. Caenorhabditis elegans transthyretin-like protein TTR-52 mediates recognition of apoptotic cells by the CED-1 phagocyte receptor. Nature cell biology 2010; 12:655-64; PMID:20526330; https://doi.org/10.1038/ncb2068
  • O'Rourke D, Baban D, Demidova M, Mott R, Hodgkin J. Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. Genome research 2006; 16:1005-16; PMID:16809667; https://doi.org/10.1101/gr.50823006
  • Irazoqui JE, Troemel ER, Feinbaum RL, Luhachack LG, Cezairliyan BO, Ausubel FM. Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathog 2010; 6:e1000982; PMID:20617181; https://doi.org/10.1371/journal.ppat.1000982
  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature protocols 2012; 7:562-78; PMID:22383036; https://doi.org/10.1038/nprot.2012.016
  • Xu MJ, Fu JH, Nisbet AJ, Huang SY, Zhou DH, Lin RQ, Song HQ, Zhu XQ. Comparative profiling of microRNAs in male and female adults of Ascaris suum. Parasitol Res 2013; 112:1189-95; PMID:23306386; https://doi.org/10.1007/s00436-012-3250-x
  • Shao CC, Xu MJ, Alasaad S, Song HQ, Peng L, Tao JP, Zhu XQ. Comparative analysis of microRNA profiles between adult Ascaris lumbricoides and Ascaris suum. BMC Vet Res 2014; 10:99; PMID:24766827; https://doi.org/10.1186/1746-6148-10-99
  • Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic acids research 2011; 39:D152-7; PMID:21037258; https://doi.org/10.1093/nar/gkq1027
  • Mah SM, Buske C, Humphries RK, Kuchenbauer F. miRNA*: a passenger stranded in RNA-induced silencing complex? Critical reviews in eukaryotic gene expression 2010; 20:141-8; PMID:21133843; https://doi.org/10.1615/CritRevEukarGeneExpr.v20.i2.40
  • Wang Y, Gao X, Wei F, Zhang X, Yu J, Zhao H, Sun Q, Yan F, Yan C, Li H, et al. Diagnostic and prognostic value of circulating miR-21 for cancer: a systematic review and meta-analysis. Gene 2014; 533:389-97; PMID:24076132; https://doi.org/10.1016/j.gene.2013.09.038
  • Brodersen P, Voinnet O. Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol 2009; 10:141-8; PMID:19145236; https://doi.org/10.1038/nrm2619
  • Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosophila. Genome Biol 2003; 5:R1; PMID:14709173; https://doi.org/10.1186/gb-2003-5-1-r1
  • Coronnello C, Benos PV. ComiR: Combinatorial microRNA target prediction tool. Nucleic acids research 2013; 41:W159-64; PMID:23703208; https://doi.org/10.1093/nar/gkt379
  • Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007; 27:91-105; PMID:17612493; https://doi.org/10.1016/j.molcel.2007.06.017
  • Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: targets and expression. Nucleic acids research 2008; 36:D149-53; PMID:18158296; https://doi.org/10.1093/nar/gkm995
  • Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19:92-105; PMID:18955434; https://doi.org/10.1101/gr.082701.108
  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120:15-20; PMID:15652477; https://doi.org/10.1016/j.cell.2004.12.035
  • Mullokandov G, Baccarini A, Ruzo A, Jayaprakash AD, Tung N, Israelow B, Evans MJ, Sachidanandam R, Brown BD. High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries. Nature methods 2012; 9:840-6; PMID:22751203; https://doi.org/10.1038/nmeth.2078
  • Tehler D, Hoyland-Kroghsbo NM, Lund AH. The miR-10 microRNA precursor family. RNA Biol 2011; 8:728-34; PMID:21881411; https://doi.org/10.4161/rna.8.5.16324
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75:843-54; PMID:8252621; https://doi.org/10.1016/0092-8674(93)90529-Y
  • Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 1999; 216:671-80; PMID:10642801; https://doi.org/10.1006/dbio.1999.9523
  • de Wit E, Linsen SE, Cuppen E, Berezikov E. Repertoire and evolution of miRNA genes in four divergent nematode species. Genome research 2009; 19:2064-74; PMID:19755563; https://doi.org/10.1101/gr.093781.109
  • Boulias K, Horvitz HR. The C. elegans microRNA mir-71 acts in neurons to promote germline-mediated longevity through regulation of DAF-16/FOXO. Cell metabolism 2012; 15:439-50; PMID:22482727; https://doi.org/10.1016/j.cmet.2012.02.014
  • Wang Q, Rosa BA, Jasmer DP, Mitreva M. Pan-Nematoda Transcriptomic Elucidation of Essential Intestinal Functions and Therapeutic Targets With Broad Potential. EBioMedicine 2015; 2:1079-89; PMID:26501106; https://doi.org/10.1016/j.ebiom.2015.07.030
  • Williamson AL, Lecchi P, Turk BE, Choe Y, Hotez PJ, McKerrow JH, Cantley LC, Sajid M, Craik CS, Loukas A. A multi-enzyme cascade of hemoglobin proteolysis in the intestine of blood-feeding hookworms. The Journal of biological chemistry 2004; 279:35950-7; PMID:15199048; https://doi.org/10.1074/jbc.M405842200
  • Minning DM, Gow AJ, Bonaventura J, Braun R, Dewhirst M, Goldberg DE, Stamler JS. Ascaris haemoglobin is a nitric oxide-activated 'deoxygenase'. Nature 1999; 401:497-502; PMID:10519555; https://doi.org/10.1038/46822
  • Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, et al. A molecular evolutionary framework for the phylum Nematoda. Nature 1998; 392:71-5; PMID:9510248; https://doi.org/10.1038/32160
  • Chen K, Rajewsky N. Deep conservation of microRNA-target relationships and 3'UTR motifs in vertebrates, flies, and nematodes. Cold Spring Harb Symp Quant Biol 2006; 71:149-56; PMID:17381291; https://doi.org/10.1101/sqb.2006.71.039
  • Xu J, Zhang R, Shen Y, Liu G, Lu X, Wu CI. The evolution of evolvability in microRNA target sites in vertebrates. Genome research 2013; 23:1810-6; PMID:24077390; https://doi.org/10.1101/gr.148916.112
  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank. Nucleic Acids Res 2005; 33:D34-8; PMID:15608212; https://doi.org/10.1093/nar/gki063
  • Jex AR, Liu S, Li B, Young ND, Hall RS, Li Y, Yang L, Zeng N, Xu X, Xiong Z, et al. Ascaris suum draft genome. Nature 2011; 479:529-33; PMID:22031327; https://doi.org/10.1038/nature10553
  • Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009; 25:1105-11; PMID:19289445; https://doi.org/10.1093/bioinformatics/btp120
  • Hillier LW, Reinke V, Green P, Hirst M, Marra MA, Waterston RH. Massively parallel sequencing of the polyadenylated transcriptome of C. elegans. Genome Res 2009; 19:657-66; PMID:19181841; https://doi.org/10.1101/gr.088112.108
  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26:139-40; PMID:19910308; https://doi.org/10.1093/bioinformatics/btp616
  • Wasmuth JD, Blaxter ML. Prot4EST: Translating Expressed Sequence Tags from neglected genomes. BMC Bioinformatics 2004; 5:187; PMID:15571632; https://doi.org/10.1186/1471-2105-5-187
  • Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq data. Genome research 2012; 22:2008-17; PMID:22722343; https://doi.org/10.1101/gr.133744.111
  • Friedländer MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N. Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 2008; 26:407-15; PMID:18392026; https://doi.org/10.1038/nbt1394
  • Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic acids research 2012; 40:37-52; PMID:21911355; https://doi.org/10.1093/nar/gkr688
  • Martin J, Rosa BA, Ozersky P, Hallsworth-Pepin K, Zhang X, Bhonagiri-Palsikar V, Tyagi R, Wang Q, Choi YJ, Gao X, et al. Helminth.net: expansions to Nematode.net and an introduction to Trematode.net. Nucleic acids research 2015; 43:D698-706; PMID:25392426; https://doi.org/10.1093/nar/gku1128
  • Richardson K, Lai CQ, Parnell LD, Lee YC, Ordovas JM. A genome-wide survey for SNPs altering microRNA seed sites identifies functional candidates in GWAS. BMC Genomics 2011; 12:504; PMID:21995669; https://doi.org/10.1186/1471-2164-12-504
  • Team RC. R: A Language and Environment for Statistical Computing. Vienna, Austria, 2012.
  • Kumar L, E Futschik M. Mfuzz: a software package for soft clustering of microarray data. Bioinformation 2007; 2:5-7; PMID:18084642; https://doi.org/10.6026/97320630002005
  • Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, et al. InterPro in 2011: new developments in the family and domain prediction database. Nucleic acids research 2012; 40:D306-12; PMID:22096229; https://doi.org/10.1093/nar/gkr948
  • Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R. InterProScan: protein domains identifier. Nucleic acids research 2005; 33:W116-20; PMID:15980438; https://doi.org/10.1093/nar/gki442
  • Prufer K, Muetzel B, Do HH, Weiss G, Khaitovich P, Rahm E, Paabo S, Lachmann M, Enard W. FUNC: a package for detecting significant associations between gene sets and ontological annotations. BMC Bioinformatics 2007; 8:41; PMID:17284313; https://doi.org/10.1186/1471-2105-8-41

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.