1,121
Views
3
CrossRef citations to date
0
Altmetric
Point of Views

Early history of circular RNAs, children of splicing

&
Pages 975-977 | Received 19 Jul 2016, Accepted 18 Aug 2016, Published online: 01 Nov 2016

References

  • Aebi M, Hornig H, Padgett RA, Reiser J, Weissmann C. Sequence requirements for splicing of higher eukaryotic nuclear pre-mRNA. Cell 1986; 47(4):555-65; PMID:3779836; https://doi.org/10.1016/0092-8674(86)90620-3
  • Berget SM, Moore C, Sharp PA. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci U S A 1977; 74(8):3171-5; PMID:269380; https://doi.org/10.1073/pnas.74.8.3171
  • Beyer AL, Osheim YN. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev 1988; 2(6):754-65; PMID:3138163; https://doi.org/10.1101/gad.2.6.754
  • Bohjanen PR, Colvin RA, Puttaraju M, Been MD, Garcia-Blanco MA. A small circular TAR RNA decoy specifically inhibits Tat-activated HIV-1 transcription. Nucleic Acids Res 1996; 24(19):3733-8; PMID:8871552; https://doi.org/10.1093/nar/24.19.3733
  • Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P, Lovell-Badge R. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 1993; 73(5):1019-30; PMID:7684656; https://doi.org/10.1016/0092-8674(93)90279-Y
  • Cech TR, Zaug AJ, Grabowski PJ. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 1981; 27(3 Pt 2):487-96; PMID:6101203; https://doi.org/10.1016/0092-8674(81)90390-1
  • Chow LT, Gelinas RE, Broker TR, Roberts RJ. An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 1977; 12(1):1-8; PMID:902310; https://doi.org/10.1016/0092-8674(77)90180-5
  • Chiara MD, Reed R. A two-step mechanism for 5′ and 3′ splice-site pairing. Nature 1995; 375(6531):510-3; PMID:7777062; https://doi.org/10.1038/375510a0
  • Cocquerelle C, Daubersies P, Majérus MA, Kerckaert JP, Bailleul B. Splicing with inverted order of exons occurs proximal to large introns. EMBO J 1992; 11(3):1095-8; PMID:1339341; PMC556550
  • Feldstein PA, Bruening G. Catalytically active geometry in the reversible circularization of “mini-monomer” RNAs derived from the complementary strand of tobacco ringspot virus satellite RNA. Nucleic Acids Res 1993; 21(8):1991-8; PMID:7684131; https://doi.org/10.1093/nar/21.8.1991
  • Ford E, Ares M. Synthesis of circular RNA in bacteria and yeast using RNA cyclase ribozymes derived from a group I intron of phage T4. Proc Natl Aca Sci U S A 1994; 91(8):3117-21; PMID:7512723; https://doi.org/10.1073/pnas.91.8.3117
  • Goldstrohm AC, Greenleaf AL, Garcia-Blanco MA. Co-transcriptional splicing of pre-messenger RNAs: considerations for the mechanism of alternative splicing. Gene 2001; 277(1-2):31-47; PMID:11602343; https://doi.org/10.1016/S0378-1119(01)00695-3
  • Jarrell KA. Inverse splicing of a group II intron. Proc Natl Acad Sci U S Am 1993; 90(18):8624-7; PMID:8378340; https://doi.org/10.1073/pnas.90.18.8624
  • Konarska MM, Padgett RA, Sharp PA. Trans splicing of mRNA precursors in vitro. Cell 1993; 42(1):165-71; PMID:3848348; https://doi.org/10.1016/S0092-8674(85)80112-4
  • Nigro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JD, Kinzler KW, Vogelstein B. Scrambled exons. Cell 1991; 64(3):607-13; PMID:1991322; https://doi.org/10.1016/0092-8674(91)90244-S
  • Puttaraju M, Been MD. Circular Ribozymes Generated in Escherichia coli Using Group I Self-splicing Permuted Intron-Exon Sequences. J Biol Chem 1996; 271:26081-7; PMID:8824250; https://doi.org/10.1074/jbc.271.42.26081
  • Pasman Z, Garcia-Blanco MA. The 5′ and 3′ splice sites come together via a three dimensional diffusion mechanism. Nucleic Acids Res 1996; 24(9):1638-45; PMID:8649980; https://doi.org/10.1093/nar/24.9.1638
  • Pasman Z, Been MD, Garcia-Blanco MA. Exon circularization in mammalian nuclear extracts. RNA 1996; 2(6):603-10; PMID:8718689; PMC1369399
  • Price JV, Engberg J, Cech TR. 5′ exon requirement for self-splicing of the Tetrahymena thermophila pre-ribosomal RNA and identification of a cryptic 5′ splice site in the 3′ exon. J Mol Biol 1987; 196(1):49-60; PMID:2443717; https://doi.org/10.1016/0022-2836(87)90510-9
  • Puttaraju M, Been MD. Group I permuted intron-exon (PIE) sequences self-splice to produce circular exons. Nucleic Acids Res 1992; 20(20):5357-64; PMID:1279519; https://doi.org/10.1093/nar/20.20.5357
  • Puttaraju M, Perrotta AT, Been MD. A circular trans-acting hepatitis delta virus ribozyme. Nucleic Acids Res 1993; 21(18):4253-8; PMID:7692400; https://doi.org/10.1093/nar/21.18.4253
  • Schindewolf C, Braun S, Domdey H. In vitro generation of a circular exon from a linear pre-mRNA transcript. Nucleic Acids Res 1996; 24(7):1260-6; PMID:8614628; https://doi.org/10.1093/nar/24.7.1260
  • Solnick D. Trans splicing of mRNA precursors. Cell 1985; s42(1):157-64; PMID:3848347; https://doi.org/10.1016/S0092-8674(85)80111-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.