5,824
Views
42
CrossRef citations to date
0
Altmetric
Reviews

In vitro circularization of RNA

&
Pages 1018-1027 | Received 19 Jul 2016, Accepted 14 Sep 2016, Published online: 01 Nov 2016

References

  • Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 2012; 7:e30733; PMID:22319583; https://doi.org/10.1371/journal.pone.0030733
  • Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-type specific features of circular RNA expression. PLoS Genet 2013; 9:e1003777; PMID:24039610; https://doi.org/10.1371/journal.pgen.1003777
  • Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013; 19:141-57; PMID:23249747; https://doi.org/10.1261/rna.035667.112
  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495:333-8; PMID:23446348; https://doi.org/10.1038/nature11928
  • Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biol 2014; 15:409; PMID:25070500; https://doi.org/10.1186/s13059-014-0409-z
  • Zhang Y, Zhang XO, Chen T, Xiang JF, Yin, Q.F., Xing YH. Circular intronic long noncoding RNAs. Mol Cell 2013; 51:792-806; PMID:24035497; https://doi.org/10.1016/j.molcel.2013.08.017
  • Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 2015; 22:256-64; PMID:25664725; https://doi.org/10.1038/nsmb.2959
  • Danan M, Schwartz S, Edelheit S, Sorek R. Transcriptome-wide discovery of circular RNAs in Archaea. Nucleic Acids Res 2012; 40:3131-42; PMID:22140119; https://doi.org/10.1093/nar/gkr1009
  • Flores R, Grubb D, Elleuch A, Nohales MA, Delgado S, Gago S. Rolling-circle replication of viroids, viroid-like satellite RNAs and hepatitis delta virus: variations on a theme. RNA Biol 2011; 8:200-6; PMID:21358283; https://doi.org/10.4161/rna.8.2.14238
  • Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol 2014; 32:453-61; PMID:24811520; https://doi.org/10.1038/nbt.2890
  • Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K, Li H. Circular RNA: A new star of noncoding RNAs. Cancer Lett 2015; 365:141-8; PMID:26052092; https://doi.org/10.1016/j.canlet.2015.06.003
  • Lu T, Cui L, Zhou Y, Zhu C, Fan D, Gong H, Zhao Q, Zhou C, Zhao Y, Lu D, et al. Transcriptome-wide investigation of circular RNAs in rice. RNA 2015; 21:2076-87; PMID:26464523; https://doi.org/10.1261/rna.052282.115
  • Broadbent KM, Broadbent JC, Ribacke U, Wirth D, Rinn JL, Sabeti PC. Strand-specific RNA sequencing in Plasmodium falciparum malaria identifies developmentally regulated long non-coding RNA and circular RNA. BMC Genomics 2015; 16:454; PMID:26070627; https://doi.org/10.1186/s12864-015-1603-4
  • Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 2014; 56:55-66; PMID:25242144; https://doi.org/10.1016/j.molcel.2014.08.019
  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495:384-8; PMID:23446346; https://doi.org/10.1038/nature11993
  • Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 2010; 6:e1001233; PMID:21151960; https://doi.org/10.1371/journal.pgen.1001233
  • Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer. Cancer Res 2013; 73:5609-12; PMID:24014594; https://doi.org/10.1158/0008-5472.CAN-13-1568
  • Li F, Zhang L, Li W, Deng J, Zheng J, An M, Lu J, Zhou Y. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/beta-catenin pathway. Oncotarget 2015; 6:6001-13; PMID:25749389; https://doi.org/10.18632/oncotarget.3469
  • Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR, Lai EC. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 2014; 9:1966-80; PMID:25544350; https://doi.org/10.1016/j.celrep.2014.10.062
  • Bahn JH, Zhang Q, Li F, Chan TM, Lin X, Kim Y, Wong DT, Xiao X. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem 2015; 61:221-30; PMID:25376581; https://doi.org/10.1373/clinchem.2014.230433
  • Li P, Chen S, Chen H, Mo X, Li T, Shao Y, Xiao B, Guo J. Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta 2015; 444:132-6; PMID:25689795; https://doi.org/10.1016/j.cca.2015.02.018
  • Petkovic S, Muller S. RNA circularization strategies in vivo and in vitro. Nucleic Acids Res 2015; 43:2454-65; PMID:25662225; https://doi.org/10.1093/nar/gkv045
  • Frommer J, Hieronymus R, Selvi Arunachalam T, Heeren S, Jenckel M, Strahl A, Appel B, Muller S. Preparation of modified long-mer RNAs and analysis of FMN binding to the ypaA aptamer from B. subtilis. RNA Biol 2014; 11:609-23; PMID:24755604; https://doi.org/10.4161/rna.28526
  • El-Sagheer AH, Brown T. New strategy for the synthesis of chemically modified RNA constructs exemplified by hairpin and hammerhead ribozymes. Proc Natl Acad Sci U S A 2010; 107:15329-34; PMID:20713730; https://doi.org/10.1073/pnas.1006447107
  • Gao M, Gnutt D, Orban A, Appel B, Righetti F, Winter R, Narberhaus F, Muller S, Ebbinghaus S. RNA Hairpin Folding in the Crowded Cell. Angew Chem Int Ed Engl 2016; 55:3224-8; PMID:26833452; https://doi.org/10.1002/anie.201510847
  • Sampson JR, Uhlenbeck OC. Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Proc Natl Acad Sci USA 1988; 85:1033-7; PMID:3277187; https://doi.org/10.1073/pnas.85.4.1033
  • Pitulle C, Kleineidam RG, Sproat B, Krupp G. Initiator oligonucleotides for the combination of chemical and enzymatic RNA synthesis. Gene 1992; 112:101-5; PMID:1372580; https://doi.org/10.1016/0378-1119(92)90309-D
  • Wolf J, Dombos V, Appel B, Muller S. Synthesis of guanosine 5′-conjugates and their use as initiator molecules for transcription priming. Org Biomol Chem 2008; 6:899-907; PMID:18292882; https://doi.org/10.1039/b716151d
  • Petkovic S, Muller S. RNA self-processing: formation of cyclic species and concatemers from a small engineered RNA. FEBS Lett 2013; 587:2435-40; PMID:23796421; https://doi.org/10.1016/j.febslet.2013.06.013
  • Winston SE, Fuller SA, Evelegh MJ, Hurrell JG. Conjugation of enzymes to antibodies. Curr Protoc Mol Biol 2001; Chapter 11:Unit 11 1; PMID:18265067; https://doi.org/10.1002/0471142727.mb1101s50
  • Rublack N, Muller S. Synthesis of a bifunctional cytidine derivative and its conjugation to RNA for in vitro selection of a cytidine deaminase ribozyme. Beilstein J Org Chem 2014; 10:1906-13; PMID:25246949; https://doi.org/10.3762/bjoc.10.198
  • Kuznetsova SA, Merenkova IN, Kanevsky IE, Shabarova ZA, Blumenfeld M. Efficient synthesis of DNA dumbbells using template-induced chemical ligation in double-stranded polynucleotides closed by minihairpin fragments. Antisense Nucleic Acid Drug Dev 1999; 9:95-100; PMID:10192294; https://doi.org/10.1089/oli.1.1999.9.95
  • Ashley GW, Kushlan DM. Chemical synthesis of oligodeoxynucleotide dumbbells. Biochemistry 1991; 30:2927-33; PMID:2007128; https://doi.org/10.1021/bi00225a028
  • Rentzeperis D, Ho J, Marky LA. Contribution of loops and nicks to the formation of DNA dumbbells: melting behavior and ligand binding. Biochemistry 1993; 32:2564-72; PMID:8448114; https://doi.org/10.1021/bi00061a014
  • Nilsson M, Malmgren H, Samiotaki M, Kwiatkowski M, Chowdhary BP, Landegren U. Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 1994; 265:2085-8; PMID:7522346; https://doi.org/10.1126/science.7522346
  • Dolinnaya NG, Blumenfeld M, Merenkova IN, Oretskaya TS, Krynetskaya NF, Ivanovskaya MG, Vasseur M, Shabarova ZA. Oligonucleotide circularization by template-directed chemical ligation. Nucleic Acids Res 1993; 21:5403-7; PMID:8265356; https://doi.org/10.1093/nar/21.23.5403
  • Shabarova ZA, Fedorova OA, Dolinnaya NG, Gottikh MB. Derivatization and template-guided ligation of oligodeoxyribonucleotides using cyanogen bromide and N-substituted morpholines. Orig Life Evol Biosph 1997; 27:555-66; PMID:11536842; https://doi.org/10.1023/A:1006577107354
  • Turunen JJ, Pavlova LV, Hengesbach M, Helm M, Müller S, Hartmann RK, Frilander MJ. RNA ligation. In: Hartmann RK, Bindereif A, Schön A, Westhof E, eds. Handbook of RNA Biochemistry. Weinheim, Germany: Wiley-VCH, 2014; 45-88 https://doi.org/10.1002/9783527647064; ISBN: 978-3-527-32764-5
  • Lohman GJ, Tabor S, Nichols NM. DNA ligases. Curr Protoc Mol Biol 2011; Chapter 3:Unit 3 14; PMID:21472697; https://doi.org/10.1002/0471142727.mb0314s94
  • Kurschat WC, Muller J, Wombacher R, Helm M. Optimizing splinted ligation of highly structured small RNAs. RNA 2005; 11:1909-14; PMID:16251384; https://doi.org/10.1261/rna.2170705
  • Moore MJ, Sharp PA. Site-specific modification of pre-mRNA: the 2′-hydroxyl groups at the splice sites. Science 1992; 256:992-7; PMID:1589782; https://doi.org/10.1126/science.1589782
  • Moore MJ. Joining RNA molecules with T4 DNA ligase. Methods Mol Biol 1999; 118:11-9; PMID:10549511; https://doi.org/10.1385/1-59259-676-2:11
  • Gaglione M, Di Fabio G, Messere A. Current methods in synthesis of cyclic oligonucleotides and analoga. Curr Org Chem 2012; 16:1371-89; https://doi.org/10.2174/138527212800672673
  • Chen CY, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 1995; 268:415-7; PMID:7536344; https://doi.org/10.1126/science.7536344
  • Park WS, Miyano-Kurosaki N, Abe T, Takai K, Yamamoto N, Takaku H. Inhibition of HIV-1 replication by a new type of circular dumbbell RNA/DNA chimeric oligonucleotides. Biochem Biophys Res Commun 2000; 270:953-60; PMID:10772932; https://doi.org/10.1006/bbrc.2000.2542
  • Middleton T, Herlihy WC, Schimmel PR, Munro HN. Synthesis and purification of oligoribonucleotides using T4 RNA ligase and reverse-phase chromatography. Anal Biochem 1985; 144:110-7; PMID:3985307; https://doi.org/10.1016/0003-2697(85)90091-0
  • Bain JD, Switzer C. Regioselective ligation of oligoribonucleotides using DNA splints. Nucleic Acids Res 1992; 20:4372; PMID:1380699; https://doi.org/10.1093/nar/20.16.4372
  • England TE, Uhlenbeck OC. 3′-terminal labelling of RNA with T4 RNA ligase. Nature 1978; 275:560-1; PMID:692735; https://doi.org/10.1038/275560a0
  • England TE, Uhlenbeck OC. Enzymatic oligoribonucleotide synthesis with T4 RNA ligase. Biochemistry 1978; 17:2069-76; PMID:667012; https://doi.org/10.1021/bi00604a008
  • Romaniuk E, McLaughlin LW, Neilson T, Romaniuk PJ. The effect of acceptor oligoribonucleotide sequence on the T4 RNA ligase reaction. Eur J Biochem 1982; 125:639-43; PMID:7117259; https://doi.org/10.1111/j.1432-1033.1982.tb06730.x
  • Beaudry D, Perreault JP. An efficient strategy for the synthesis of circular RNA molecules. Nucleic Acids Res 1995; 23:3064-6; PMID:7544891; https://doi.org/10.1093/nar/23.15.3064
  • Abe N, Abe H, Ito Y. Dumbbell-shaped nanocircular RNAs for RNA interference. J Am Chem Soc 2007; 129:15108-9; PMID:18001025; https://doi.org/10.1021/ja0754453
  • Abe N, Abe H, Nagai C, Harada M, Hatakeyama H, Harashima H, Ohshiro T, Nishihara M, Furukawa K, Maeda M, et al. Synthesis, structure, and biological activity of dumbbell-shaped nanocircular RNAs for RNA interference. Bioconjug Chem 2011; 22:2082-92; PMID:21899349; https://doi.org/10.1021/bc2003154
  • Abe N, Abe H, Ohshiro T, Nakashima Y, Maeda M, Ito Y. Synthesis and characterization of small circular double-stranded RNAs. Chem Commun (Camb) 2011; 47:2125-7; PMID:21180718; https://doi.org/10.1039/C0CC04551A
  • Ohtsuki T, Kawai G, Watanabe K. Stable isotope-edited NMR analysis of Ascaris suum mitochondrial tRNAMet having a TV-replacement loop. J Biochem 1998; 124:28-34; PMID:9644241; https://doi.org/10.1093/oxfordjournals.jbchem.a022092
  • Persson T, Cuzic S, Hartmann RK. Catalysis by RNase P RNA: unique features and unprecedented active site plasticity. J Biol Chem 2003; 278:43394-401; PMID:12904300; https://doi.org/10.1074/jbc.M305939200
  • Rigden JE, Rezaian MA. In vitro synthesis of an infectious viroid: analysis of the infectivity of monomeric linear CEV. Virology 1992; 186:201-6; PMID:1727598; https://doi.org/10.1016/0042-6822(92)90074-Y
  • Wang L, Ruffner DE. Oligoribonucleotide circularization by ‘template-mediated’ ligation with T4 RNA ligase: synthesis of circular hammerhead ribozymes. Nucleic Acids Res 1998; 26:2502-4; PMID:9580707; https://doi.org/10.1093/nar/26.10.2502
  • Steger J, Graber D, Moroder H, Geiermann AS, Aigner M, Micura R. Efficient access to nonhydrolyzable initiator tRNA based on the synthesis of 3′-azido-3′-deoxyadenosine RNA. Angew Chem Int Ed Engl 2010; 49:7470-2; PMID:21038451; https://doi.org/10.1002/anie.201003424
  • Nandakumar J, Shuman S. How an RNA ligase discriminates RNA versus DNA damage. Mol Cell 2004; 16:211-21; PMID:15494308; https://doi.org/10.1016/j.molcel.2004.09.022
  • Bullard DR, Bowater RP. Direct comparison of nick-joining activity of the nucleic acid ligases from bacteriophage T4. Biochem J 2006; 398:135-44; PMID:16671895; https://doi.org/10.1042/BJ20060313
  • Ho CK, Shuman S. Bacteriophage T4 RNA ligase 2 (gp24.1) exemplifies a family of RNA ligases found in all phylogenetic domains. Proc Natl Acad Sci USA 2002; 99:12709-14; PMID:12228725; https://doi.org/10.1073/pnas.192184699
  • Abe N, Matsumoto K, Nishihara M, Nakano Y, Shibata A, Maruyama H, Shuto S, Matsuda A, Yoshida M, Ito Y, et al. Rolling Circle Translation of Circular RNA in Living Human Cells. Sci Rep 2015; 5:16435; PMID:26553571; https://doi.org/10.1038/srep16435
  • Micura R. Cyclic oligoribonucleotides (RNA) by solid-phase synthesis. Chemistry 1999; 5:2077-82; https://doi.org/10.1002/(SICI)1521-3765(19990702)5:7%3c2077::AID-CHEM2077%3e3.0.CO;2-U
  • Wang S, Kool ET. Circular RNA oligonucleotides. Synthesis, nucleic acid binding properties, and a comparison with circular DNAs. Nucleic Acids Res 1994; 22:2326-33; PMID:7518582; https://doi.org/10.1093/nar/22.12.2326
  • Herrlein MK, Nelson JS, Letsinger RL. A covalent lock for self-assembledoligonucleotide conjugates. J Am Chem Soc 1995; 117:10151-2; https://doi.org/10.1021/ja00145a042
  • Xu Y, Kool ET. A novel %'-iodonucleoside allows efficient nonenzymatic ligation of singlestranded and duplex DNAs. Tetrahedron Lett 1997; 38:5595-8; PMID:19924262; https://doi.org/10.1016/S0040-4039(97)01266-5
  • Sturm MB, Roday S, Schramm VL. Circular DNA and DNA/RNA hybrid molecules as scaffolds for ricin inhibitor design. J Am Chem Soc 2007; 129:5544-50; PMID:17417841; https://doi.org/10.1021/ja068054h
  • Edupuganti OP, Defrancq E, Dumy P. Head-to-tail oxime cyclization of oligodeoxynucleotides for the efficient synthesis of circular DNA analogues. J Org Chem 2003; 68:8708-10; PMID:14575507; https://doi.org/10.1021/jo035064h
  • El-Sagheer AH, Kumar R, Findlow S, Werner JM, Lane AN, Brown T. A very stable cyclic DNA miniduplex with just two base pairs. Chembiochem 2008; 9:50-2; PMID:18058775; https://doi.org/10.1002/cbic.200700538
  • Kumar R, El-Sagheer A, Tumpane J, Lincoln P, Wilhelmsson LM, Brown T. Template-directed oligonucleotide strand ligation, covalent intramolecular DNA circularization and catenation using click chemistry. J Am Chem Soc 2007; 129:6859-64; PMID:17488075; https://doi.org/10.1021/ja070273v
  • Liu J, Taylor JS. Template-directed photoligation of oligodeoxyribonucleotides via 4-thiothymidine. Nucleic Acids Res 1998; 26:3300-4; PMID:9628933; https://doi.org/10.1093/nar/26.13.3300
  • Zapata L, Bathany K, Schmitter JM, Moreau S. Metal-assisted hybridization of oligonucleotides, evaluation of circular 2′-O-Me RNA as ligands for the TAR RNA target. Eur J Org Chem 2003; 3:1022-8; https://doi.org/10.1002/ejoc.200390143
  • Sakharkar MK, Chow VT, Kangueane P. Distributions of exons and introns in the human genome. In Silico Biol 2004; 4:387-93; PMID:15217358
  • Pieper S, Vauleon S, Muller S. RNA self-processing towards changed topology and sequence oligomerization. Biol Chem 2007; 388:743-6; PMID:17570827; https://doi.org/10.1515/BC.2007.067
  • Petkovic S, Badelt S, Block S, Flamm C, Delcea M, Hofacker I, Müller S. Sequence-controlled RNA self-processing: computational design, biochemical analysis and visualization by AFM. RNA 2015; 21:1249-60; PMID:25999318; https://doi.org/10.1261/rna.047670.114
  • Nesbitt SM, Erlacher HA, Fedor MJ. The internal equilibrium of the hairpin ribozyme: temperature, ion and pH effects. J Mol Biol 1999; 286:1009-24; PMID:10047478; https://doi.org/10.1006/jmbi.1999.2543
  • Fedor MJ. Tertiary structure stabilization promotes hairpin ribozyme ligation. Biochemistry 1999; 38:11040-50; PMID:10460159; https://doi.org/10.1021/bi991069q
  • Strohbach D, Novak N, Muller S. Redox-active riboswitching: allosteric regulation of ribozyme activity by ligand-shape control. Angew Chem Int Ed Engl 2006; 45:2127-9; PMID:16502442; https://doi.org/10.1002/anie.200503820
  • Vauleon S, Muller S. External regulation of hairpin ribozyme activity by an oligonucleotide effector. Chembiochem 2003; 4:220-4; PMID:12616637; https://doi.org/10.1002/cbic.200390035
  • Puttaraju M, Been MD. Group I permuted intron-exon (PIE) sequences self-splice to produce circular exons. Nucleic Acids Res 1992; 20:5357-64; PMID:1279519; https://doi.org/10.1093/nar/20.20.5357
  • Ford E, Ares M, Jr. Synthesis of circular RNA in bacteria and yeast using RNA cyclase ribozymes derived from a group I intron of phage T4. Proc Natl Acad Sci USA 1994; 91:3117-21; PMID:7512723; https://doi.org/10.1073/pnas.91.8.3117
  • Umekage S, Kikuchi Y. In vivo circular RNA production using a constitutive promoter for high-level expression. J Biosci Bioeng 2009; 108:354-6; PMID:19716528; https://doi.org/10.1016/j.jbiosc.2009.04.011
  • Umekage S, Kikuchi Y. In vitro and in vivo production and purification of circular RNA aptamer. J Biotechnol 2009; 139:265-72; PMID:19138712; https://doi.org/10.1016/j.jbiotec.2008.12.012
  • Puttaraju M, Perrotta AT, Been MD. A circular trans-acting hepatitis delta virus ribozyme. Nucleic Acids Res 1993; 21:4253-8; PMID:7692400; https://doi.org/10.1093/nar/21.18.4253
  • Puttaraju M, Been MD. Circular ribozymes generated in Escherichia coli using group I self-splicing permuted intron-exon sequences. J Biol Chem 1996; 271:26081-7; PMID:8824250; https://doi.org/10.1074/jbc.271.42.26081
  • Mikheeva S, Hakim-Zargar M, Carlson D, Jarrell K. Use of an engineered ribozyme to produce a circular human exon. Nucleic Acids Res 1997; 25:5085-94; PMID:9396820; https://doi.org/10.1093/nar/25.24.5085
  • Jarrell KA. Inverse splicing of a group II intron. Proc Natl Acad Sci U S A 1993; 90:8624-7; PMID:8378340; https://doi.org/10.1073/pnas.90.18.8624

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.