5,267
Views
30
CrossRef citations to date
0
Altmetric
Review

RNA binding to APOBEC deaminases; Not simply a substrate for C to U editing

Pages 1153-1165 | Received 30 Sep 2016, Accepted 08 Nov 2016, Published online: 18 Dec 2016

References

  • Jackman JE, Alfonzo JD. Transfer RNA modifications: nature's combinatorial chemistry playground. Wiley Interdiscip Rev RNA 2013; 4(1):35-48; PMID:23139145; http://dx.doi.org/10.1002/wrna.1144
  • Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, Rother KM, et al. MODOMICS: a database of RNA modification pathways–2013 update. Nucleic Acids Res 2013; 41:D262-7; PMID:23118484; http://dx.doi.org/10.1093/nar/gks1007
  • Grosjean H. RNA modification: the Golden Period 1995-2015. RNA 2015; 21:625-6; PMID:25780166; http://dx.doi.org/10.1261/rna.049866.115
  • Grosjean H. Nuclei Acids are Not Boring Long Polymers of Only Four Types of Nucleotides: A Guided Tour. DNA and RNA modification enzymes: structure, mechanism, function and evolution, ed. Grosjean H. 2009, Austin, TX: Landes BioScience.
  • Grosjean, H., Moddification and Editing of RNA: Historical Overview and Important Facts to Remember. Topics in Current Genetics, ed. Grosjean H. 2005; 12, New York: Springer:442.
  • Read LK, Lukes J, Hashimi H. Trypanosome RNA editing: the complexity of getting U in and taking U out. Wiley Interdiscip Rev RNA 2016; 7(1):33-51; PMID:26522170; http://dx.doi.org/10.1002/wrna.1313
  • Stuart KD, Schnaufer A, Ernst NL, Panigrahi AK. Complex management: RNA editing in trypanosomes. Trends Biochem Sci 2005; 30(2):97-105; PMID:15691655; http://dx.doi.org/10.1016/j.tibs.2004.12.006
  • Wedekind JE, Dance GS, Sowden MP, Smith HC. Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends Genet 2003; 19(4):207-16; PMID:12683974; http://dx.doi.org/10.1016/S0168-9525(03)00054-4
  • Smith HC, Gott JM, Hanson MR. A guide to RNA editing. RNA 1997; 3(10):1105-23; PMID:9326486
  • Mannion N, Arieti F, Gallo A, Keegan LP, O'Connell MA. New Insights into the Biological Role of Mammalian ADARs; the RNA Editing Proteins. Biomolecules 2015; 5(4):2338-62; PMID:26437436; http://dx.doi.org/10.3390/biom5042338
  • Savva YA, Rieder LE, Reenan RA. The ADAR protein family. Genome Biol 2012; 13(12):252; PMID:23273215; http://dx.doi.org/10.1186/gb-2012-13-12-252
  • Rafels-Ybern A, Attolini CS, Ribas de Pouplana L. Distribution of ADAT-Dependent Codons in the Human Transcriptome. Int J Mol Sci 2015; 16(8):17303-14; PMID:26230688; http://dx.doi.org/10.3390/ijms160817303
  • Aydin H, Taylor MW, Lee JE. Structure-guided analysis of the human APOBEC3-HIV restrictome. Structure 2014; 22(5):668-84; PMID:24657093; http://dx.doi.org/10.1016/j.str.2014.02.011
  • Salter JD, Bennett RP, Smith HC. The APOBEC Protein Family: United by Structure, Divergent in Function. Trends Biochem Sci 2016; 41(7):578-94; PMID:27283515; http://dx.doi.org/10.1016/j.tibs.2016.05.001
  • Li JB, Church GM. Deciphering the functions and regulation of brain-enriched A-to-I RNA editing. Nat Neurosci 2013; 16(11):1518-22; PMID:24165678; http://dx.doi.org/10.1038/nn.3539
  • Holmgren M, Rosenthal JJ. Regulation of ion channel and transporter function through RNA editing. Curr Issues Mol Biol 2015; 17:23-36; PMID:25347917
  • Driscoll DM, Innerarity TL. RNA Editing by Cytidine Deamination in Mammals, in RNA Editing, Bass BL, Editor. 2001, Oxford University Press: Oxford. p. 61-76.
  • Chelico L, Prochnow C, Erie DA, Chen XS, Goodman MF. A structural model for deoxycytidine deamination mechanisms of the HIV-1 inactivation enzyme APOBEC3G. J Biol Chem 2010; 285(21):16195-205; PMID:20212048; http://dx.doi.org/10.1074/jbc.M110.107987
  • Kitamura S, Ode H, Nakashima M, Imahashi M, Naganawa Y, Kurosawa T, Yokomaku Y, Yamane T, Watanabe N, Suzuki A, et al., The APOBEC3C crystal structure and the interface for HIV-1 Vif binding. Nat Struct Mol Biol 2012; 19(10):1005-10; PMID:23001005; http://dx.doi.org/10.1038/nsmb.2378
  • Shandilya SM, Nalam MN, Nalivaika EA, Gross PJ, Valesano JC, Shindo K, Li M, Munson M, Royer WE, Harjes E, et al. Crystal structure of the APOBEC3G catalytic domain reveals potential oligomerization interfaces. Structure 2010; 18(1):28-38; PMID:20152150; http://dx.doi.org/10.1016/j.str.2009.10.016
  • Kuratani M, Ishii R, Bessho Y, Fukunaga R, Sengoku T, Shirouzu M, Sekine S, Yokoyama S. Crystal structure of tRNA adenosine deaminase (TadA) from Aquifex aeolicus. J Biol Chem 2005; 280(16):16002-8; PMID:15677468; http://dx.doi.org/10.1074/jbc.M414541200
  • Goodman RA, Macbeth MR, Beal PA. ADAR proteins: structure and catalytic mechanism. Curr Top Microbiol Immunol 2012; 353:1-33; PMID:21769729
  • Shaban NM, et al. 1.92 Angstrom Zinc-Free APOBEC3F Catalytic Domain Crystal Structure. J Mol Biol 2016; 428(11):2307-16; PMID:27139641; http://dx.doi.org/10.1016/j.jmb.2016.04.026
  • Deffit SN, Hundley HA. To edit or not to edit: regulation of ADAR editing specificity and efficiency. Wiley Interdiscip Rev RNA 2016; 7(1):113-27; PMID:26612708; http://dx.doi.org/10.1002/wrna.1319
  • Anant S, MacGinnitie AJ, Davidson NO. apobec-1, the catalytic subunit of the mammalian apolipoprotein B mRNA editing enzyme, is a novel RNA-binding protein. J Biol Chem 1995; 270(24):14762-7; PMID:7782342; http://dx.doi.org/10.1074/jbc.270.24.14762
  • Backus JW, Smith HC. Three distinct RNA sequence elements are required for efficient apolipoprotein B (apoB) RNA editing in vitro. Nucleic Acids Res 1992; 20(22):6007-14; PMID:1461733; http://dx.doi.org/10.1093/nar/20.22.6007
  • Sowden MP, Ballatori N, de Mesy Jensen KL, Hamilton Reed L, Smith HC. The editosome for cytidine to uridine mRNA editing has a native complexity of 27S: identification of intracellular domains containing active and inactive editing factors. J Cell Science 2002; 115(1027-1039):1027-1039.
  • Blanc V, Henderson JO, Newberry EP, Kennedy S, Luo J, Davidson NO. Targeted deletion of the murine apobec-1 complementation factor (acf) gene results in embryonic lethality. Mol Cell Biol 2005; 25(16):7260-9; PMID:16055734; http://dx.doi.org/10.1128/MCB.25.16.7260-7269.2005
  • Chen KM, Harjes E, Gross PJ, Fahmy A, Lu Y, Shindo K, Harris RS, Matsuo H. Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature 2008; 452(7183):116-9; PMID:18288108; http://dx.doi.org/10.1038/nature06638
  • Harjes E, Gross PJ, Chen KM, Lu Y, Shindo K, Nowarski R, Gross JD, Kotler M, Harris RS, Matsuo H. An extended structure of the APOBEC3G catalytic domain suggests a unique holoenzyme model. J Mol Biol 2009; 389(5):819-32; PMID:19389408; http://dx.doi.org/10.1016/j.jmb.2009.04.031
  • Polevoda B, McDougall WM, Tun BN, Cheung M, Salter JD, Friedman AE, Smith HC. RNA binding to APOBEC3G induces the disassembly of functional deaminase complexes by displacing single-stranded DNA substrates. Nucleic Acids Res 2015; 43(19):9434-45; PMID:26424853; http://dx.doi.org/10.1093/nar/gkv970
  • Byeon IJ, Ahn J, Mitra M, Byeon CH, Hercík K, Hritz J, Charlton LM, Levin JG, Gronenborn AM. NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity. Nat Commun 2013; 4:1890; PMID:23695684; http://dx.doi.org/10.1038/ncomms2883
  • Kasar S, Kim J, Improgo R, Tiao G, Polak P, Haradhvala N, Lawrence MS, Kiezun A, Fernandes SM, Bahl S, et al. Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution. Nat Commun 2015; 6:8866; PMID:26638776; http://dx.doi.org/10.1038/ncomms9866
  • Knisbacher BA, Gerber D, Levanon EY. DNA Editing by APOBECs: A genomic preserver and transformer. Trends Genet 2016; 32(1):16-28; PMID:26608778; http://dx.doi.org/10.1016/j.tig.2015.10.005
  • Bazak L, Haviv A, Barak M, Jacob-Hirsch J, Deng P, Zhang R, Isaacs FJ, Rechavi G, Li JB, Eisenberg E, et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res 2014; 24(3):365-76; PMID:24347612; http://dx.doi.org/10.1101/gr.164749.113
  • Rosenberg BR, Hamilton CE, Mwangi MM, Dewell S, Papavasiliou FN. Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA-editing targets in transcript 3′ UTRs. Nat Struct Mol Biol 2011; 18(2):230-6; PMID:21258325; http://dx.doi.org/10.1038/nsmb.1975
  • Licht K, Jantsch MF. Rapid and dynamic transcriptome regulation by RNA editing and RNA modifications. J Cell Biol 2016; 213(1):15-22; PMID:27044895; http://dx.doi.org/10.1083/jcb.201511041
  • Knisbacher BA, Levanon EY. DNA Editing of LTR Retrotransposons reveals the impact of APOBECs on Vertebrate Genomes. Mol Biol Evol 2016; 33(2):554-67; PMID:26541172; http://dx.doi.org/10.1093/molbev/msv239
  • Sharma S, Patnaik SK, Taggart RT, Kannisto ED, Enriquez SM, Gollnick P, Baysal BE. APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages. Nat Commun 2015; 6:6881; PMID:25898173; http://dx.doi.org/10.1038/ncomms7881
  • Tomaselli S, Bonamassa B, Alisi A, Nobili V, Locatelli F, Gallo A. ADAR enzyme and miRNA story: a nucleotide that can make the difference. Int J Mol Sci 2013; 14(11):22796-816; PMID:24256817; http://dx.doi.org/10.3390/ijms141122796
  • Witkin KL, Hanlon SE, Strasburger JA, Coffin JM, Jaffrey SR, Howcroft TK, Dedon PC, Steitz JA, Daschner PJ, Read-Connole E. RNA editing, epitranscriptomics, and processing in cancer progression. Cancer Biol Ther 2015; 16(1):21-7; PMID:25455629; http://dx.doi.org/10.4161/15384047.2014.987555
  • Harris RS, Dudley JP. APOBECs and virus restriction. Virology 2015; 479-480:131-45; PMID:25818029; http://dx.doi.org/10.1016/j.virol.2015.03.012
  • Zipeto MA, Jiang Q, Melese E, Jamieson CH. RNA rewriting, recoding, and rewiring in human disease. Trends Mol Med 2015; 21(9):549-59; PMID:26259769; http://dx.doi.org/10.1016/j.molmed.2015.07.001
  • Avesson L, Barry G. The emerging role of RNA and DNA editing in cancer. Biochim Biophys Acta 2014; 1845(2):308-16; PMID:24607277
  • Yamanaka S, Poksay KS, Arnold KS, Innerarity TL. A novel translational repressor mRNA is edited extensively in livers containing tumors caused by the transgene expression of the apoB mRNA- editing enzyme. Genes Dev 1997; 11(3):321-33; PMID:9030685; http://dx.doi.org/10.1101/gad.11.3.321
  • Sowden M, Hamm JK, Spinelli S, Smith HC. Determinants involved in regulating the proportion of edited apolipoprotein B RNAs. RNA 1996; 2(3):274-88; PMID:8608451
  • Honjo T, Muramatsu M, Fagarasan S. AID: how does it aid antibody diversity? Immunity 2004; 20(6):659-68; PMID:15189732; http://dx.doi.org/10.1016/j.immuni.2004.05.011
  • Longerich S, et al. AID in somatic hypermutation and class switch recombination. Curr Opin Immunol 2006; 18(2):164-74; PMID:16464563; http://dx.doi.org/10.1016/j.coi.2006.01.008
  • Arakawa H, Saribasak H, Buerstedde JM. Activation-induced cytidine deaminase initiates immunoglobulin gene conversion and hypermutation by a common intermediate. PLoS Biol 2004; 2(7):E179; PMID:15252444; http://dx.doi.org/10.1371/journal.pbio.0020179
  • Li J, Potash MJ, Volsky DJ. Functional domains of APOBEC3G required for antiviral activity. J Cell Biochem 2004; 92(3):560-72; PMID:15156567; http://dx.doi.org/10.1002/jcb.20082
  • Dickerson SK, Market E, Besmer E, Papavasiliou FN. AID mediates hypermutation by deaminating single stranded DNA. J Exp Med 2003; 197(10):1291-6; PMID:12756266; http://dx.doi.org/10.1084/jem.20030481
  • Papavasiliou FN, Schatz DG. Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Cell 2002; 109:S35-44; PMID:11983151; http://dx.doi.org/10.1016/S0092-8674(02)00706-7
  • Rebhandl S, Huemer M, Greil R, Geisberger R. AID/APOBEC deaminases and cancer. Oncoscience 2015; 2(4):320-33; PMID:26097867; http://dx.doi.org/10.18632/oncoscience.155
  • Robbiani DF, Bothmer A, Callen E, Reina-San-Martin B, Dorsett Y, Difilippantonio S, Bolland DJ, Chen HT, Corcoran AE, Nussenzweig A, et al. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 2008; 135(6):1028-38; PMID:19070574; http://dx.doi.org/10.1016/j.cell.2008.09.062
  • Henderson S, Fenton T. APOBEC3 genes: retroviral restriction factors to cancer drivers. Trends Mol Med 2015; 21(5):274-84; PMID:25820175; http://dx.doi.org/10.1016/j.molmed.2015.02.007
  • Alfonzo JD, Blanc V, Estévez AM, Rubio MA, Simpson L. C to U editing of the anticodon of imported mitochondrial tRNA(Trp) allows decoding of the UGA stop codon in Leishmania tarentolae. Embo J 1999; 18(24):7056-62; PMID:10601027; http://dx.doi.org/10.1093/emboj/18.24.7056
  • Reid JG, Nagaraja AK, Lynn FC, Drabek RB, Muzny DM, Shaw CA, Weiss MK, Naghavi AO, Khan M, Zhu H, et al. Mouse let-7 miRNA populations exhibit RNA editing that is constrained in the 5′-seed/ cleavage/anchor regions and stabilize predicted mmu-let-7a:mRNA duplexes. Genome Res 2008; 18(10):1571-81; PMID:18614752; http://dx.doi.org/10.1101/gr.078246.108
  • Fernandez HR, Kavi HH, Xie W, Birchler JA. Heterochromatin: on the ADAR radar? Curr Biol 2005; 15(4):R132-4; PMID:15723784; http://dx.doi.org/10.1016/j.cub.2005.02.012
  • Benetti R, Gonzalo S, Jaco I, Muñoz P, Gonzalez S, Schoeftner S, Murchison E, Andl T, Chen T, Klatt P, et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol 2008; 15(9):998; PMID:18769471; http://dx.doi.org/10.1038/nsmb0908-998b
  • Alon S, Mor E, Vigneault F, Church GM, Locatelli F, Galeano F, Gallo A, Shomron N, Eisenberg E. Systematic identification of edited microRNAs in the human brain. Genome Res 2012; 22(8):1533-40; PMID:22499667; http://dx.doi.org/10.1101/gr.131573.111
  • Cui Y, Huang T, Zhang X. RNA editing of microRNA prevents RNA-induced silencing complex recognition of target mRNA. Open Biol 2015; 5(12):150126; PMID:26674414; http://dx.doi.org/10.1098/rsob.150126
  • Doria M, Neri F, Gallo A, Farace MG, Michienzi A. Editing of HIV-1 RNA by the double-stranded RNA deaminase ADAR1 stimulates viral infection. Nucleic Acids Res 2009; 37(17):5848-58; PMID:19651874; http://dx.doi.org/10.1093/nar/gkp604
  • Lazar DC, Morris KV, Saayman SM. The emerging role of long non-coding RNAs in HIV infection. Virus Res 2016; 212:114-26; PMID:26221763; http://dx.doi.org/10.1016/j.virusres.2015.07.023
  • Skuse GR, Cappione AJ, Sowden M, Metheny LJ, Smith HC. The neurofibromatosis type I messenger RNA undergoes base-modification RNA editing. Nucleic Acids Res 1996; 24(3):478-85; PMID:8602361; http://dx.doi.org/10.1093/nar/24.3.478
  • Smith HC. Deaminase-dependent and Deaminase-independent Functions of APOBEC1 and APOBEC1 Complementation Factor in the Context of the APOBEC Family. RNA Editing, ed. Maas S. 2013, Norfolk, UK: Caister Academic Press.
  • Smith HC, Wedekind JE, Kefang X, Sowden MP. Mammalian C to U Editing. Topics Curr Genetics 2005; 12:365-400; http://dx.doi.org/10.1007/b105432
  • Jarmuz A, Chester A, Bayliss J, Gisbourne J, Dunham I, Scott J, Navaratnam N. An Anthropoid-Specific Locus of Orphan C to U RNA-Editing Enzymes on Chromosome 22. Genomics 2002; 79(3):285-96; PMID:11863358; http://dx.doi.org/10.1006/geno.2002.6718
  • Smith HC. APOBEC3G: a double agent in defense. Trends Biochem Sci 2011; 36(5):239-44; PMID:21239176; http://dx.doi.org/10.1016/j.tibs.2010.12.003
  • Klein IA, Resch W, Jankovic M, Oliveira T, Yamane A, Nakahashi H, Di Virgilio M, Bothmer A, Nussenzweig A, Robbiani DF, et al. Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell 2011; 147(1):95-106; PMID:21962510; http://dx.doi.org/10.1016/j.cell.2011.07.048
  • Ichikawa HT, Sowden MP, Torelli AT, Bachl J, Huang P, Dance GS, Marr SH, Robert J, Wedekind JE, Smith H, et al., Structural phylogenetic analysis of activation-induced deaminase function. J Immunol 2006; 177(1):355-61; PMID:16785531; http://dx.doi.org/10.4049/jimmunol.177.1.355
  • Leonard B, Starrett GJ, Maurer MJ, Oberg AL, Van Bockstal M, Van Dorpe J, De Wever O, Helleman J, Sieuwerts AM, Berns EM, et al. APOBEC3G Expression Correlates with T-Cell infiltration and improved clinical outcomes in High-grade Serous Ovarian Carcinoma. Clin Cancer Res 2016; 22(18):4746-55; PMID:27016308; http://dx.doi.org/10.1158/1078-0432.CCR-15-2910
  • Harris RS, Petersen-Mahrt SK, Neuberger MS. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol Cell 2002; 10(5):1247-53; PMID:12453430; http://dx.doi.org/10.1016/S1097-2765(02)00742-6
  • Beale RC, Petersen-Mahrt SK, Watt IN, Harris RS, Rada C, Neuberger MS. Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo. J Mol Biol 2004; 26(337):585-96; http://dx.doi.org/10.1016/j.jmb.2004.01.046
  • Prohaska KM, Bennett RP, Salter JD, Smith HC. The multifaceted roles of RNA binding in APOBEC cytidine deaminase functions. Wiley Interdiscip Rev RNA 2014; 5(4):493-508; PMID:24664896; http://dx.doi.org/10.1002/wrna.1226
  • Anant S, Davidson NO. Molecular mechanisms of apolipoprotein B mRNA editing. Curr Opin Lipidol 2001; 12(2):159-65; PMID:11264987; http://dx.doi.org/10.1097/00041433-200104000-00009
  • Nakamuta M, Chang B.H.J, Zsigmond E, Kobayashi K, Lei H, Ishida BY, Oka K, Li E, Chan L. Complete phenotypic characterization of the apobec-1 knockout mice with a wild-type genetic background and a human apolipoprotein B transgenic background, and restoration of apolipoprotein B mRNA editing by somatic gene transfer of Apobec-1. J Biol Chem 1996; 271:25981-25988; PMID:8824235; http://dx.doi.org/10.1074/jbc.271.42.25981
  • Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, Catalan N, Forveille M, Dufourcq-Lagelouse R, Gennery A, et al. Activation-Induced Cytidine Deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM Syndrome (HIGM2). Cell 2000; 102(5):565-575 ; PMID:11007475; http://dx.doi.org/10.1016/S0092-8674(00)00079-9
  • Rogozin IB, Basu MK, Jordan IK, Pavlov Y, Koonin EV. APOBEC4, a new member of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases predicted by computational analysis. Cell Cycle 2005; 4(9):1281-5; PMID:16082223; http://dx.doi.org/10.4161/cc.4.9.1994
  • Mikl MC, Watt IN, Lu M, Reik W, Davies SL, Neuberger MS, Rada C. Mice deficient in APOBEC2 and APOBEC3. Mol Cell Biol 2005; 25(16):7270-7; PMID:16055735; http://dx.doi.org/10.1128/MCB.25.16.7270-7277.2005
  • Sato Y, Probst HC, Tatsumi R, Ikeuchi Y, Neuberger MS, Rada C. Deficiency in APOBEC2 leads to a shift in muscle fiber type, diminished body mass, and myopathy. J Biol chem 2010; 285(10):7111-8; PMID:20022958; http://dx.doi.org/10.1074/jbc.M109.052977
  • Kato L, Stanlie A, Begum NA, Kobayashi M, Aida M, Honjo T. An evolutionary view of the mechanism for immune and genome diversity. J Immunol 2012; 188(8):3559-66; PMID:22492685; http://dx.doi.org/10.4049/jimmunol.1102397
  • Zhao Y, Pan-Hammarström Q, Zhao Z, Hammarström L. Identification of the activation-induced cytidine deaminase gene from zebrafish: an evolutionary analysis. Dev Comp Immunol 2005; 29(1):61-71; PMID:15325524; http://dx.doi.org/10.1016/j.dci.2004.05.005
  • Wakae K, Magor BG, Saunders H, Nagaoka H, Kawamura A, Kinoshita K, Honjo T, Muramatsu M. Evolution of class switch recombination function in fish activation-induced cytidine deaminase, AID. Int Immunol 2006; 18(1):41-7; PMID:16291656; http://dx.doi.org/10.1093/intimm/dxh347
  • Franchini DM, Petersen-Mahrt SK. AID and APOBEC deaminases: balancing DNA damage in epigenetics and immunity. Epigenomics 2014; 6(4):427-43; PMID:25333851; http://dx.doi.org/10.2217/epi.14.35
  • Horn AV, Klawitter S, Held U, Berger A, Vasudevan AA, Bock A, Hofmann H, Hanschmann KM, Trösemeier JH, Flory E, et al. Human LINE-1 restriction by APOBEC3C is deaminase independent and mediated by an ORF1p interaction that affects LINE reverse transcriptase activity. Nucleic Acids Res 2013; 42(1):396-416.
  • Sawyer SL, Emerman M, Malik HS. Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol 2004; 2(9):E275; PMID:15269786; http://dx.doi.org/10.1371/journal.pbio.0020275
  • Kinomoto M, Kanno T, Shimura M, Ishizaka Y, Kojima A, Kurata T, Sata T, Tokunaga K. All APOBEC3 family proteins differentially inhibit LINE-1 retrotransposition. Nucleic Acids Res 2007; 35(9):2955-64; PMID:17439959; http://dx.doi.org/10.1093/nar/gkm181
  • Hultquist JF, Lengyel JA, Refsland EW, LaRue RS, Lackey L, Brown WL, Harris RS. Human and Rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H demonstrate a conserved capacity to Restrict Vif-deficient HIV-1. J Virol 2011; 85(21):11220-34.
  • Tan L, Sarkis PT, Wang T, Tian C, Yu XF. Sole copy of Z2-type human cytidine deaminase APOBEC3H has inhibitory activity against retrotransposons and HIV-1. FASEB J 2009; 23(1):279-87; http://dx.doi.org/10.1096/fj.07-088781
  • Conticello SG, Thomas CJ, Petersen-Mahrt SK, Neuberger MS. Evolution of the AID/APOBEC Family of Polynucleotide (Deoxy)cytidine Deaminases. Mol Biol Evol 2005; 22(2):367-77; PMID:15496550; http://dx.doi.org/10.1093/molbev/msi026
  • Pace C, Keller J, Nolan D, James I, Gaudieri S, Moore C, Mallal S. Population level analysis of human immunodeficiency virus type 1 hypermutation and its relationship with APOBEC3G and vif genetic variation. J Virol 2006; 80(18):9259-69; PMID:16940537; http://dx.doi.org/10.1128/JVI.00888-06
  • Munk C, Willemsen A, Bravo IG, An ancient history of gene duplications, fusions and losses in the evolution of APOBEC3 mutators in mammals. BMC Evol Biol 2012; 12:71; PMID:22640020; http://dx.doi.org/10.1186/1471-2148-12-71
  • Kidd JM, Newman TL, Tuzun E, Kaul R, Eichler EE. Population stratification of a common APOBEC gene deletion polymorphism. PLoS Genet 2007; 3(4):e63; PMID:17447845; http://dx.doi.org/10.1371/journal.pgen.0030063
  • Wittkopp CJ, Adolph MB, Wu LI, Chelico L, Emerman M. A single nucleotide polymorphism in Human APOBEC3C enhances restriction of lentiviruses. PLoS Pathog 2016; 12(10):e1005865; PMID:27732658; http://dx.doi.org/10.1371/journal.ppat.1005865
  • McCarthy H, Wierda WG, Barron LL, Cromwell CC, Wang J, Coombes KR, Rangel R, Elenitoba-Johnson KS, Keating MJ, Abruzzo LV. High expression of activation-induced cytidine deaminase (AID) and splice variants is a distinctive feature of poor-prognosis chronic lymphocytic leukemia. Blood 2003; 101(12):4903-8; PMID:12586616; http://dx.doi.org/10.1182/blood-2002-09-2906
  • Wu X, Darce JR, Chang SK, Nowakowski GS, Jelinek DF. Alternative splicing regulates activation-induced cytidine deaminase (AID): implications for suppression of AID mutagenic activity in normal and malignant B cells. Blood 2008; 112(12):4675-4682; PMID:18684869; http://dx.doi.org/10.1182/blood-2008-03-145995
  • OhAinle M, Kerns JA, Malik HS, Emerman M, Adaptive evolution and antiviral activity of the conserved mammalian cytidine deaminase APOBEC3H. J Virol 2006; 80(8):3853-62; PMID:16571802; http://dx.doi.org/10.1128/JVI.80.8.3853-3862.2006
  • Feng Y, Love RP, Ara A, Baig TT, Adolph MB, Chelico L. Natural polymorphisms and oligomerization of human APOBEC3H contribute to single-stranded DNA scanning ability. J Biol Chem 2015; 290(45):27188-203
  • Starrett GJ, Luengas EM, McCann JL, Ebrahimi D, Temiz NA, Love RP, Feng Y, Adolph MB, Chelico L, Law EK, et al., The DNA cytosine deaminase APOBEC3H haplotype I likely contributes to breast and lung cancer mutagenesis. Nat Commun 2016; 7:12918; PMID:27650891; http://dx.doi.org/10.1038/ncomms12918
  • Zhang J., Webb DM. Rapid evolution of primate antiviral enzyme APOBEC3G. Hum Mol Genet 2004; 13(16):1785-91; PMID:15198990; http://dx.doi.org/10.1093/hmg/ddh183
  • Refsland EW, Stenglein MD, Shindo K, Albin JS, Brown WL, Harris RS. Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction. Nucleic Acids Res 2010; 38(13):4274-84; PMID:20308164; http://dx.doi.org/10.1093/nar/gkq174
  • Smith JL, Pathak VK. Identification of specific determinants of human APOBEC3F, APOBEC3C, and APOBEC3DE and African green monkey APOBEC3F that interact with HIV-1 Vif. J Virol 2010; 84(24):12599-608; PMID:20943965; http://dx.doi.org/10.1128/JVI.01437-10
  • Dance GS, Beemiller P, Yang Y, Mater DV, Mian IS, Smith HC. Identification of the yeast cytidine deaminase CDD1 as an orphan C–>U RNA editase. Nucleic Acids Res 2001; 29(8):1772-80; PMID:11292850; http://dx.doi.org/10.1093/nar/29.8.1772
  • Xie K, Sowden MP, Dance GS, Torelli AT, Smith HC, Wedekind JE. The structure of a yeast RNA-editing deaminase provides insight into the fold and function of activation-induced deaminase and APOBEC-1. Proc Natl Acad Sci U S A 2004; 101(21):8114-9; PMID:15148397; http://dx.doi.org/10.1073/pnas.0400493101
  • Bohn MF, Shandilya SM, Albin JS, Kouno T, Anderson BD, McDougle RM, Carpenter MA, Rathore A, Evans L, Davis AN, et al., Crystal structure of the DNA cytosine deaminase APOBEC3F: the catalytically active and HIV-1 Vif-binding domain. Structure 2013; 21(6):1042-50; PMID:23685212; http://dx.doi.org/10.1016/j.str.2013.04.010
  • Prochnow C, Bransteitter R, Klein MG, Goodman MF, Chen XS, The APOBEC-2 crystal structure and functional implications for the deaminase AID. Nature 2007; 445(7126):447-51; PMID:17187054; http://dx.doi.org/10.1038/nature05492
  • Krzysiak TC, Jung J, Thompson J, Baker D, Gronenborn AM. APOBEC2 is a monomer in solution: implications for APOBEC3G models. Biochemistry 2012; 51(9):2008-17; PMID:22339232; http://dx.doi.org/10.1021/bi300021s
  • Xiao X, Li SX, Yang H, Chen XS. Crystal structures of APOBEC3G N-domain alone and its complex with DNA. Nat Commun 2016; 7:12193; PMID:27480941; http://dx.doi.org/10.1038/ncomms12193
  • Chen Q, Xiao X, Wolfe A, Chen XS. The in vitro Biochemical Characterization of an HIV-1 Restriction Factor APOBEC3F: Importance of Loop 7 on Both CD1 and CD2 for DNA Binding and Deamination. J Mol Biol 2016; 428(13):2661-70; PMID:27063502; http://dx.doi.org/10.1016/j.jmb.2016.03.031
  • Navarro F, et al., Complementary function of the two catalytic domains of APOBEC3G. Virology 2005; 333(2):374-86; PMID:15721369; http://dx.doi.org/10.1016/j.virol.2005.01.011
  • Pham P, et al. Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 2003; 424(6944):103-7; PMID:12819663; http://dx.doi.org/10.1038/nature01760
  • Chelico L, Pham P, Goodman MF. Mechanisms of APOBEC3G-catalyzed processive deamination of deoxycytidine on single-stranded DNA. Nat Struct Mol Biol 2009; 16(5):454-5; author reply 455-6; PMID:19421154; http://dx.doi.org/10.1038/nsmb0509-454
  • Senavirathne G, et al. Single-stranded DNA scanning and deamination by APOBEC3G cytidine deaminase at single molecule resolution. J Biol Chem 2012; 287(19):15826-35; PMID:22362763; http://dx.doi.org/10.1074/jbc.M112.342790
  • McDougall WM, Okany C, Smith HC. Deaminase Activity on Single-stranded DNA (ssDNA) Occurs in Vitro when APOBEC3G Cytidine Deaminase Forms Homotetramers and Higher-order Complexes. J Biol Chem 2011; 286 (35):30655-61; PMID:21737457; http://dx.doi.org/10.1074/jbc.M111.269506
  • Ta VT, Nagaoka H, Catalan N, Durandy A, Fischer A, Imai K, Nonoyama S, Tashiro J, Ikegawa M, Ito S, et al. AID mutant analyses indicate requirement for class-switch-specific cofactors. Nat Immunol 2003; 4(9):843-8; PMID:12910268; http://dx.doi.org/10.1038/ni964
  • Ramiro AR, et al. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat Immunol 2003; 4(5):452-6; PMID:12692548; http://dx.doi.org/10.1038/ni920
  • Bross L, et al. DNA Double-Strand Breaks: Prior to but not Sufficient in Targeting Hypermutation. J Exp Med 2002; 195(9):1187-1192; PMID:11994423; http://dx.doi.org/10.1084/jem.20011749
  • Basu U, et al. The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature 2005; 438(7067):508-11; PMID:16251902; http://dx.doi.org/10.1038/nature04255
  • Chatterji M, Unniraman S, McBride KM, Schatz DG. Role of activation-induced deaminase protein kinase A phosphorylation sites in Ig gene conversion and somatic hypermutation. J Immunol 2007; 179(8):5274-80; PMID:17911613; http://dx.doi.org/10.4049/jimmunol.179.8.5274
  • Chaudhuri J, Khuong C, Alt FW. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 2004; 430(7003):992-8; PMID:15273694; http://dx.doi.org/10.1038/nature02821
  • Chaudhuri, J., Tian M, Khuong C, Chua K, Pinaud E, Alt FW. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 2003; 422(6933):726-30; PMID:12692563; http://dx.doi.org/10.1038/nature01574
  • Chelico L, Pham P, Goodman MF. Stochastic properties of processive cytidine DNA deaminases AID and APOBEC3G. Philos Trans R Soc Lond B Biol Sci 2009; 364(1517):583-93; PMID:19022738; http://dx.doi.org/10.1098/rstb.2008.0195
  • Koning FA, Newman EN, Kim EY, Kunstman KJ, Wolinsky SM, Malim MH. Defining APOBEC3 expression patterns in human tissues and hematopoietic cell subsets. J Virol 2009; 83(18):9474-85; PMID:19587057; http://dx.doi.org/10.1128/JVI.01089-09
  • Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 2002; 418:646-650; PMID:12167863; http://dx.doi.org/10.1038/nature00939
  • Smith HC, Bennett RP, Kizilyer A, McDougall WM, Prohaska KM. Functions and regulation of the APOBEC family of proteins. Semin Cell Dev Biol 2012; 23(3):258-68; PMID:22001110; http://dx.doi.org/10.1016/j.semcdb.2011.10.004
  • Krupp A, McCarthy KR, Ooms M, Letko M, Morgan JS, Simon V, Johnson WE. APOBEC3G polymorphism as a selective barrier to cross-species transmission and emergence of pathogenic SIV and AIDS in a primate host. PLoS Pathog 2013; 9(10):e1003641; PMID:24098115; http://dx.doi.org/10.1371/journal.ppat.1003641
  • Perez-Caballero D, Soll SJ, Bieniasz PD. Evidence for restriction of ancient primate gammaretroviruses by APOBEC3 but not TRIM5alpha proteins. PLoS Pathog 2008; 4(10):e1000181; PMID:18927623; http://dx.doi.org/10.1371/journal.ppat.1000181
  • Bulliard Y, Turelli P, Röhrig UF, Zoete V, Mangeat B, Michielin O, Trono D. Functional analysis and structural modeling of human APOBEC3G reveal the role of evolutionarily conserved elements in the inhibition of human immunodeficiency virus type 1 infection and Alu transposition. J Virol 2009; 83(23):12611-21; PMID:19776130; http://dx.doi.org/10.1128/JVI.01491-09
  • Siu KK, Sultana A, Azimi FC, Lee JE. Structural determinants of HIV-1 Vif susceptibility and DNA binding in APOBEC3F. Nat Commun 2013; 4:2593; PMID:24185281; http://dx.doi.org/10.1038/ncomms3593
  • Shi, K., Carpenter MA, Kurahashi K, Harris RS, Aihara H. Crystal Structure of the DNA Deaminase APOBEC3B Catalytic Domain. J Biol Chem 2015; 290(47):28120-30; PMID:26416889; http://dx.doi.org/10.1074/jbc.M115.679951
  • Stauch B, Hofmann H, Perkovic M, Weisel M, Kopietz F, Cichutek K, Münk C, Schneider G. Model structure of APOBEC3C reveals a binding pocket modulating ribonucleic acid interaction required for encapsidation. Proc Natl Acad Sci U S A 2009; 106(29):12079-84; PMID:19581596; http://dx.doi.org/10.1073/pnas.0900979106
  • Logue EC, Bloch N, Dhuey E, Zhang R, Cao P, Herate C, Chauveau L, Hubbard SR, Landau NR. A DNA sequence recognition loop on APOBEC3A controls substrate specificity. PLoS One 2014; 9(5):e97062; PMID:24827831; http://dx.doi.org/10.1371/journal.pone.0097062
  • Polevoda B, McDougall WM, Bennett RP, Salter JD, Smith HC. Structural and functional assessment of APOBEC3G macromolecular complexes. Methods 2016; 107:10-22; PMID:26988126
  • Lau PP, Zhu HJ, Baldini A, Charnsangavej C, Chan L. Dimeric structure of a human apolipoprotein B mRNA editing protein and cloning and chromosomal localization of its gene. Proc Natl Acad Sci U S A 1994; 91(18):8522-6; PMID:8078915; http://dx.doi.org/10.1073/pnas.91.18.8522
  • Navaratnam N, Fujino T, Bayliss J, Jarmuz A, How A, Richardson N, Somasekaram A, Bhattacharya S, Carter C, Scott J. Escherichia coli cytidine deaminase provides a molecular model for ApoB RNA editing and a mechanism for RNA substrate recognition. J Mol Biol 1998; 275(4):695-714; PMID:9466941; http://dx.doi.org/10.1006/jmbi.1997.1506
  • Bennett RP, Salter JD, Liu X, Wedekind JE, Smith HC. APOBEC3G subunits self-associate via the C-terminal deaminase domain. J Biol Chem 2008; 283(48):33329-36; PMID:18842592; http://dx.doi.org/10.1074/jbc.M803726200
  • Salter JD, Krucinska J, Raina J, Smith HC, Wedekind JE. A hydrodynamic analysis of APOBEC3G reveals a monomer-dimer-tetramer self-association that has implications for anti-HIV function. Biochemistry 2009; 48(45):10685-7; PMID:19839647; http://dx.doi.org/10.1021/bi901642c
  • Wedekind JE, Gillilan R, Janda A, Krucinska J, Salter JD, Bennett RP, Raina J, Smith HC. Nanostructures of APOBEC3G support a hierarchical assembly model of high molecular mass ribonucleoprotein particles from dimeric subunits. J Biol Chem 2006; 281:38122-38126; PMID:17079235; http://dx.doi.org/10.1074/jbc.C600253200
  • Shlyakhtenko LS, Lushnikov AY, Miyagi A, Li M, Harris RS, Lyubchenko YL. Atomic force microscopy studies of APOBEC3G oligomerization and dynamics. J Struct Biol 2013; 184(2):217-25; PMID:24055458
  • Bohn MF, Shandilya SM, Silvas TV, Nalivaika EA, Kouno T, Kelch BA, Ryder SP, Kurt-Yilmaz N, Somasundaran M, Schiffer CA. The ssDNA Mutator APOBEC3A Is Regulated by Cooperative Dimerization. Structure 2015; 23(5):903-11; PMID:25914058; http://dx.doi.org/10.1016/j.str.2015.03.016
  • Iwatani Y, Takeuchi H, Strebel K, Levin JG. Biochemical activities of highly purified, catalytically active human APOBEC3G: correlation with antiviral effect. J Virol 2006; 80(12):5992-6002; PMID:16731938; http://dx.doi.org/10.1128/JVI.02680-05
  • Wang J, Shinkura R, Muramatsu M, Nagaoka H, Kinoshita K, Honjo T. Identification of a specific domain required for dimerization of activation-induced cytidine deaminase. J Biol Chem 2006; 281(28):19115-23; PMID:16687409; http://dx.doi.org/; http://dx.doi.org/10.1074/jbc.M601645200
  • Shlyakhtenko LS, Lushnikov AJ, Li M, Harris RS, Lyubchenko YL. Interaction of APOBEC3A with DNA assessed by atomic force microscopy. PLoS One 2014; 9(6):e99354; PMID:24905100; http://dx.doi.org/10.1371/journal.pone.0099354
  • Brar SS, Sacho EJ, Tessmer I, Croteau DL, Erie DA, Diaz M. Activation-induced deaminase, AID, is catalytically active as a monomer on single-stranded DNA. DNA Repair (Amst) 2008; 7(1):77-87; PMID:17889624; http://dx.doi.org/10.1016/j.dnarep.2007.08.002
  • Chelico, L., Sacho EJ, Erie DA, Goodman MF. A model for oligomeric regulation of APOBEC3G cytosine deaminase-dependent restriction of HIV. J Biol Chem 2008; 283(20):13780-91; PMID:18362149; http://dx.doi.org/10.1074/jbc.M801004200
  • Opi S, Takeuchi H, Kao S, Khan MA, Miyagi E, Goila-Gaur R, Iwatani Y, Levin JG, Strebel K. Monomeric APOBEC3G is catalytically active and has antiviral activity. J Virol 2006; 80(10):4673-82; PMID:16641260; http://dx.doi.org/10.1128/JVI.80.10.4673-4682.2006
  • Siriwardena SU, Guruge TA, Bhagwat AS. Characterization of the Catalytic Domain of Human APOBEC3B and the Critical Structural Role for a Conserved Methionine. J Mol Biol 2015; 427(19):3042-55; PMID:26281709; http://dx.doi.org/10.1016/j.jmb.2015.08.006
  • Furukawa A, Nagata T, Matsugami A, Habu Y, Sugiyama R, Hayashi F, Kobayashi N, Yokoyama S, Takaku H, Katahira M. Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G. EMBO J 2009; 28(4):440-51; PMID:19153609; http://dx.doi.org/10.1038/emboj.2008.290
  • Gallois-Montbrun S, Holmes RK, Swanson CM, Fernández-Ocaña M, Byers HL, Ward MA, Malim MH. Comparison of cellular ribonucleoprotein complexes associated with the APOBEC3F and APOBEC3G antiviral proteins. J Virol 2008; 82(11):5636-42; PMID:18367521; http://dx.doi.org/10.1128/JVI.00287-08
  • Huthoff H, Autore F, Gallois-Montbrun S, Fraternali F, Malim MH, Hope TJ. RNA-dependent oligomerization of APOBEC3G is required for restriction of HIV-1. PLoS Pathog 2009; 5(3):e1000330; PMID:19266078; http://dx.doi.org/10.1371/journal.ppat.1000330
  • McDougall WM, Smith HC. Direct evidence that RNA inhibits APOBEC3G ssDNA cytidine deaminase activity. Biochem Biophys Res Commun 2011; 412(4):612-7; PMID:21856286; http://dx.doi.org/10.1016/j.bbrc.2011.08.009
  • Wichroski MJ, Robb GB, Rana TM. Human retroviral host restriction factors APOBEC3G and APOBEC3F localize to mRNA processing bodies. PLoS Pathog 2006; 2(5):e41; PMID:16699599; http://dx.doi.org/10.1371/journal.ppat.0020041
  • York A, Kutluay SB, Errando M, Bieniasz PD. The RNA Binding Specificity of Human APOBEC3 Proteins Resembles That of HIV-1 Nucleocapsid. PLoS Pathog 2016; 12(8):e1005833; PMID:27541140; http://dx.doi.org/10.1371/journal.ppat.1005833
  • Apolonia L, Schulz R, Curk T, Rocha P, Swanson CM, Schaller T, Ule J, Malim MH. Promiscuous RNA binding ensures effective encapsidation of APOBEC3 proteins by HIV-1. PLoS Pathog 2015; 11(1):e1004609; PMID:25590131; http://dx.doi.org/10.1371/journal.ppat.1004609
  • Friew YN, Boyko V, Hu W-S, Pathak VK. Intracellular interactions between APOBEC3G, RNA, and HIV-1 Gag: APOBEC3G multimerization is dependent on its association with RNA. Retrovirology 2009; 6:56; PMID:19497112; http://dx.doi.org/10.1186/1742-4690-6-56
  • Khan MA, Goila-Gaur R, Opi S, Miyagi E, Takeuchi H, Kao S, Strebel K. Analysis of the contribution of cellular and viral RNA to the packaging of APOBEC3G into HIV-1 virions. Retrovirology 2007; 4:48; PMID:17631688; http://dx.doi.org/10.1186/1742-4690-4-48
  • Kozak SL, Marin M, Rose KM, Bystrom C, Kabat D The anti-HIV-1 editing enzyme APOBEC3G binds HIV-1 RNA and messenger RNAs that shuttle between polysomes and stress granules. J Biol Chem 2006; 281(39):29105-19; PMID:16887808; http://dx.doi.org/10.1074/jbc.M601901200
  • Svarovskaia ES, Xu H, Mbisa JL, Barr R, Gorelick RJ, Ono A, Freed EO, Hu WS, Pathak VK. Human APOBEC3G is incorporated into HIV-1 virions through interactions with viral and nonviral RNAs. J Biol Chem 2004; 279(34):35822-8; PMID:15210704
  • Huthoff H., Malim MH. Identification of amino acid residues in APOBEC3G required for regulation by human immunodeficiency virus type 1 Vif and Virion encapsidation. J Virol 2007; 81(8):3807-15; PMID:17267497; http://dx.doi.org/10.1128/JVI.02795-06
  • Belanger K, Langlois MA. RNA-binding residues in the N-terminus of APOBEC3G influence its DNA sequence specificity and retrovirus restriction efficiency. Virology 2015; 483:141-148; PMID:25974865; http://dx.doi.org/10.1016/j.virol.2015.04.019
  • Lavens D, Peelman F, Van der Heyden J, Uyttendaele I, Catteeuw D, Verhee A, Van Schoubroeck B, Kurth J, Hallenberger S, Clayton R, Tavernier J. Definition of the interacting interfaces of Apobec3G and HIV-1 Vif using MAPPIT mutagenesis analysis. Nucleic Acids Res 2010; 38(6):1902-12; PMID:20015971; http://dx.doi.org/10.1093/nar/gkp1154
  • Dance GS, Sowden MP, Cartegni L, Cooper E, Krainer AR, Smith HC Two proteins essential for apolipoprotein B mRNA editing are expressed from a single gene through alternative splicing. J Biol Chem 2002; 277(15):12703-9; PMID:11815617; http://dx.doi.org/10.1074/jbc.M111337200
  • Mehta A, Driscoll DM. Identification of Domains in APOBEC-1 Complementation Factor Required for RNA Binding and Apolipoprotein B mRNA editing. RNA 2002; 8:69-82; PMID:11871661; http://dx.doi.org/10.1017/S1355838202015649
  • Lehmann, D.M., Galloway CA, Sowden MP, Smith HC. Metabolic regulation of apoB mRNA editing is associated with phosphorylation of APOBEC-1 complementation factor. Nucleic Acids Res 2006; 34(11):3299-308; PMID:16820530; http://dx.doi.org/10.1093/nar/gkl417
  • Fossat, N., Tourle K, Radziewic T, Barratt K, Liebhold D, Studdert JB, Power M, Jones V, Loebel DA, Tam PP. C to U RNA editing mediated by APOBEC1 requires RNA-binding protein RBM47. EMBO Rep 2014; 15(8):903-10; PMID:24916387; http://dx.doi.org/10.15252/embr.201438450
  • Yang Y, Smith HC. Multiple protein domains determine the cell type-specific nuclear distribution of the catalytic subunit required for apolipoprotein B mRNA editing. Proc Natl Acad Sci U S A 1997; 94(24):13075-80; PMID:9371802; http://dx.doi.org/10.1073/pnas.94.24.13075
  • Sowden MP, Smith HC. Commitment of apolipoprotein B RNA to the splicing pathway regulates cytidine-to-uridine editing-site utilization. Biochem J 2001; 359(Pt 3):697-705; PMID:11672445; http://dx.doi.org/10.1042/bj3590697
  • Patenaude AM, Di Noia JM. The mechanisms regulating the subcellular localization of AID. Nucleus 2010; 1(4):325-331; PMID:21327080; http://dx.doi.org/10.4161/nucl.1.4.12107
  • Brar SS, Watson M, Diaz M. Activation-induced cytosine deaminase (AID) is actively exported out of the nucleus but retained by the induction of DNA breaks. J Biol Chem 2004; 279(25):26395-401; PMID:15087440; http://dx.doi.org/10.1074/jbc.M403503200
  • Bennett RP, Diner E, Sowden MP, Lees JA, Wedekind JE, Smith HC. APOBEC-1 and AID are nucleo-cytoplasmic trafficking proteins but APOBEC3G cannot traffic. Biochem Biophys Res Commun 2006; 350(1):214-9; PMID:16999936; http://dx.doi.org/10.1016/j.bbrc.2006.09.032
  • Ellyard JI, Benk AS, Taylor B, Rada C, Neuberger MS. The dependence of Ig class-switching on the nuclear export sequence of AID likely reflects interaction with factors additional to Crm1 exportin. Eur J Immunol 2011; 41(2):485-90; PMID:21268017; http://dx.doi.org/10.1002/eji.201041011
  • Aoufouchi S, Faili A, Zober C, D'Orlando O, Weller S, Weill JC, Reynaud CA. Proteasomal degradation restricts the nuclear lifespan of AID. J Exp Med 2008; 205(6):1357-68; PMID:18474627; http://dx.doi.org/10.1084/jem.20070950
  • McCarthy H, Wierda WG, Barron LL, Cromwell CC, Wang J, Coombes KR, Rangel R, Elenitoba-Johnson KS, Keating MJ, Abruzzo LV. High expression of activation-induced cytidine deaminase (AID) and splice variants is a distinctive feature of poor-prognosis chronic lymphocytic leukemia. Blood 2003; 101(12):4903-8; PMID:12586616; http://dx.doi.org/10.1182/blood-2002-09-2906
  • Wu X, Darce JR, Chang SK, Nowakowski GS, Jelinek DF. Alternative splicing regulates activation-induced cytidine deaminase (AID): implications for suppression of AID mutagenic activity in normal and malignant B cells. Blood 2008; 112(12):4675-82; PMID:18684869; http://dx.doi.org/10.1182/blood-2008-03-145995
  • Methot SP, Litzler LC, Trajtenberg F, Zahn A, Robert F, Pelletier J, Buschiazzo A, Magor BG, Di Noia JM. Consecutive interactions with HSP90 and eEF1A underlie a functional maturation and storage pathway of AID in the cytoplasm. J Exp Med 2015; 212(4):581-96; PMID:25824822; http://dx.doi.org/10.1084/jem.20141157
  • Nonaka T, Doi T, Toyoshima T, Muramatsu M, Honjo T, Kinoshita K. Carboxy-terminal domain of AID required for its mRNA complex formation in vivo. Proc Natl Acad Sci U S A 2009; 106(8):2747-51; PMID:19196959; http://dx.doi.org/10.1073/pnas.0812957106
  • Kreisberg JF, Yonemoto W, Greene WC. Endogenous factors enhance HIV infection of tissue naive CD4 T cells by stimulating high molecular mass APOBEC3G complex formation. J Exp Med 2006; 203(4):865-70; PMID:16606671; http://dx.doi.org/10.1084/jem.20051856
  • Stopak KS, Chiu YL, Kropp J, Grant RM, Greene WC. Distinct patterns of cytokine regulation of APOBEC3G expression and activity in primary lymphocytes, macrophages, and dendritic cells. J Biol Chem 2007; 282(6):3539-46; PMID:17110377; http://dx.doi.org/10.1074/jbc.M610138200
  • Soros VB, Yonemoto W, Greene WC. Newly synthesized APOBEC3G is incorporated into HIV virions, inhibited by HIV RNA, and subsequently activated by RNase H. PLoS Pathog 2007; 3(2):e15; PMID:17291161; http://dx.doi.org/10.1371/journal.ppat.0030015
  • Gallois-Montbrun S, Kramer B, Swanson CM, Byers H, Lynham S, Ward M, Malim MH. Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules. J Virol 2007; 81(5):2165-78; PMID:17166910; http://dx.doi.org/10.1128/JVI.02287-06
  • Chaurasiya KR, McCauley MJ, Wang W, Qualley DF, Wu T, Kitamura S, Geertsema H, Chan DS, Hertz A, Iwatani Y, et al. Oligomerization transforms human APOBEC3G from an efficient enzyme to a slowly dissociating nucleic acid-binding protein. Nat Chem 2014; 6(1):28-33; PMID:24345943; http://dx.doi.org/10.1038/nchem.1795
  • Wang T, Tian C, Zhang W, Sarkis PT, Yu XF. Interaction with 7SL RNA but not with HIV-1 genomic RNA or P bodies is required for APOBEC3F virion packaging. J Mol Biol 2008; 375(4):1098-112; PMID:18067920; http://dx.doi.org/10.1016/j.jmb.2007.11.017
  • Zhen A, Du J, Zhou X, Xiong Y, Yu XF. Reduced APOBEC3H variant anti-viral activities are associated with altered RNA binding activities. PLoS One 2012; 7(7):e38771; PMID:22859935; http://dx.doi.org/10.1371/journal.pone.0038771
  • Bogerd HP, Cullen BR. Single-stranded RNA facilitates nucleocapsid: APOBEC3G complex formation. RNA 2008; 14(6):1228-36; PMID:18456846; http://dx.doi.org/10.1261/rna.964708
  • Alce TM, Popik W. APOBEC3G is incorporated into virus-like particles by a direct interaction with HIV-1 Gag nucleocapsid protein. J Biol Chem 2004; 279(33):34083-6; PMID:15215254; http://dx.doi.org/10.1074/jbc.C400235200
  • Cen S, Guo F, Niu M, Saadatmand J, Deflassieux J, Kleiman L. The interaction between HIV-1 Gag and APOBEC3G. J Biol Chem 2004; 279(32):33177-84; PMID:15159405; http://dx.doi.org/10.1074/jbc.M402062200
  • Luo K, Liu B, Xiao Z, Yu Y, Yu X, Gorelick R, Yu XF. Amino-terminal region of the human immunodeficiency virus type 1 nucleocapsid is required for human APOBEC3G packaging. J Virol 2004; 78(21):11841-52; PMID:15479826; http://dx.doi.org/10.1128/JVI.78.21.11841-11852.2004
  • Schafer A, Bogerd HP, Cullen BR. Specific packaging of APOBEC3G into HIV-1 virions is mediated by the nucleocapsid domain of the gag polyprotein precursor. Virol 2004; 328(2):163-8; PMID:15464836; http://dx.doi.org/10.1016/j.virol.2004.08.006