1,839
Views
23
CrossRef citations to date
0
Altmetric
Letter to the Editor

Why so narrow: Distribution of anti-sense regulated, type I toxin-antitoxin systems compared with type II and type III systems

, ORCID Icon, &
Pages 275-280 | Received 10 Oct 2016, Accepted 09 Dec 2016, Published online: 01 Feb 2017

References

  • Van Melderen L, De Bast MS. Bacterial toxin-antitoxin systems: more than selfish entities? PLoS Genetics 2009; 5(3); PMID:19325885; http://dx.doi.org/10.1371/journal/pgen.1000437
  • Gerdes K, Christensen SK, Løbner-Olesen A. Prokaryotic toxin-antitoxin stress response loci. Nat Rev Microbiol 2005; 3(5):371-82; PMID:15864262; http://dx.doi.org/10.1038/nrmicro1147
  • Silvaggi JM, Perkins JB, Losick R. Small untranslated RNA antitoxin in Bacillus subtilis. J Bacteriol 2005; 187(19):6641-50; PMID:16166525; http://dx.doi.org/10.1128/JB.187.19.6641-6650.2005
  • Kawano M, Reynolds AA, Miranda-Rios J, Storz G. Detection of 5′-and 3′-UTR-derived small RNAs and cis-encoded antisense RNAs in Escherichia coli. Nucleic Acids Res 2005; 33(3):1040-50; PMID:15718303; http://dx.doi.org/10.1093/nar/gki256
  • Darfeuille F, Unoson C, Vogel Jr, Wagner EGH. An antisense RNA inhibits translation by competing with standby ribosomes. Mol Cell 2007; 26(3):381-92; PMID:17499044; http://dx.doi.org/10.1016/j.molcel.2007.04.003
  • Kawano M, Aravind L, Storz G. An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. Mol Microbiol 2007; 64(3):738-54; PMID:17462020; http://dx.doi.org/10.1111/j.1365-2958.2007.05688.x
  • Fozo EM, Kawano M, Fontaine F, Kaya Y, Mendieta KS, Jones KL, Ocampo A, Rudd KE, Storz G. Repression of small toxic protein synthesis by the Sib and OhsC small RNAs. Mol Microbiol 2008; 70(5):1076-93; PMID:18710431; http://dx.doi.org/10.1111/j.1365-2958.2008.06394.x
  • Fozo EM, Hemm MR, Storz G. Small toxic proteins and the antisense RNAs that repress them. Microbiol Mol Biol Rev 2008; 72(4):579-89; PMID:19052321; http://dx.doi.org/10.1128/MMBR.00025-08
  • Gerdes K, Nielsen A, Thorsted P, Wagner EGH. Mechanism of killer gene activation. Antisense RNA-dependent RNase III cleavage ensures rapid turn-over of the stable Hok, SrnB and PndA effector messenger RNAs. J Mol Biol 1992; 226(3):637-49; PMID:1380562; http://dx.doi.org/10.1016/0022-2836(92)90621-P
  • Cataudella I, Trusina A, Sneppen K, Gerdes K, Mitarai N. Conditional cooperativity in toxin–antitoxin regulation prevents random toxin activation and promotes fast translational recovery. Nucleic acids Res 2012; 40(14):6424-34; PMID:22495927; http://dx.doi.org/10.1093/nar/gks297
  • Van Melderen L. Toxin-antitoxin systems: why so many, what for? Curr Opin Microbiol 2010; 13(6):781-5; PMID:21041110; http://dx.doi.org/10.1016/j.mib.2010.10.006
  • Fozo EM, Makarova KS, Shabalina SA, Yutin N, Koonin EV, Storz G. Abundance of type I toxin-antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucleic Acids Res 2010; 38(11):3743-59; PMID:20156992; http://dx.doi.org/10.1093/nar/gkq054
  • Makarova KS, Wolf YI, Koonin EV. Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biology Direct 2009; 4(1):19; PMID:19493340; http://dx.doi.org/10.1186/1745-6150-4-19
  • Leplae R, Geeraerts D, Hallez R, Guglielmini J, Drèze P, Van Melderen L. Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Res 2011; 39(13):5513-25; PMID:21422074; http://dx.doi.org/10.1093/nar/gkr131
  • Mruk I, Kobayashi I. To be or not to be: regulation of restriction-modification systems and other toxin-antitoxin systems. Nucleic Acids Res 2014; 42(1):70-86; PMID:23945938; http://dx.doi.org/10.1093/nar/gkt711
  • Mine N, Guglielmini J, Wilbaux M, Van Melderen L. The decay of the chromosomally encoded ccdO157 toxin-antitoxin system in the Escherichia coli species. Genetics 2009; 181(4):1557-66; PMID:19189956; http://dx.doi.org/10.1534/genetics.108.095190
  • Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS, Salmond GPC. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc Natl Acad Sci 2009; 106(3):894-9; http://dx.doi.org/10.1073/pnas.0808832106
  • Goeders N, Chai R, Chen B, Day A, Salmond GP. Structure, evolution, and functions of bacterial type III toxin-antitoxin systems. Toxins 2016; 8(10):282; PMID:27690100; http://dx.doi.org/10.3390/toxins8100282
  • Gerdes K, Rasmussen PB, Molin Sr. Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. Proc Natl Acad Sci U S A 1986; 83(10):3116-20; PMID:3517851; http://dx.doi.org/10.1073/pnas.83.10.3116
  • Franch T, Gultyaev AP, Gerdes K. Programmed cell death by hok/sok of plasmid R1: processing at the hok mRNA 3′-end triggers structural rearrangements that allow translation and antisense RNA binding. J Mol Biol 1997; 273(1):38-51; PMID:9367744; http://dx.doi.org/10.1006/jmbi.1997.1294
  • Pecota DC, Wood TK. Exclusion of T4 phage by the hok/sok killer locus from plasmid R1. J Bacteriol 1996; 178(7):2044-50; PMID:8606182; http://dx.doi.org/10.1128/jb.178.7.2044-2050.1996
  • Naito T, Kusano K, Kobayashi I. Selfish behavior of restriction-modification systems. Science 1995; 267(5199):897; PMID:7846533; http://dx.doi.org/10.1126/science.7846533
  • Inglis RF, Bayramoglu B, Gillor O, Ackermann M. The role of bacteriocins as selfish genetic elements. Biology letters 2013; 9(3):20121173; PMID:23616642; http://dx.doi.org/10.1098/rsbl.2012.1173
  • Cooper TF, Heinemann JA. Selection for plasmid post-segregational killing depends on multiple infection: evidence for the selection of more virulent parasites through parasite-level competition. Proc Biol Sci 2005; 272(1561):403; PMID:15734695; http://dx.doi.org/10.1098/rspb.2004.2921
  • Cooper TF, Heinemann JA. Postsegregational killing does not increase plasmid stability but acts to mediate the exclusion of competing plasmids. Proc Natl Acad Sci U S A 2000; 97(23):12643; PMID:11058151; http://dx.doi.org/10.1073/pnas.220077897
  • Cooper TF, Paixão T, Heinemann JA. Within-host competition selects for plasmid-encoded toxin-antitoxin systems. Proc Biol Sci 2010; 277(1697):3149; PMID:20504809; http://dx.doi.org/10.1098/rspb.2010.0831
  • Tsilibaris V, Maenhaut-Michel G, Mine N, Van Melderen L. What is the benefit to Escherichia coli of having multiple toxin-antitoxin systems in its genome? J Bacteriol 2007; 189(17):6101; PMID:17513477; http://dx.doi.org/10.1128/JB.00527-07
  • Christensen-Dalsgaard M, Gerdes K. Two higBA loci in the Vibrio cholerae superintegron encode mRNA cleaving enzymes and can stabilize plasmids. Mol Microbiol 2006; 62(2):397-411; PMID:17020579; http://dx.doi.org/10.1111/j.1365-2958.2006.05385.x
  • Dörr T, Lewis K, Vulić M. SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genetics 2009; 5(12):e1000760; PMID:20011100; http://dx.doi.org/10.1371/journal.pgen.1000760
  • Rowe-Magnus DA, Mazel D. Integrons: natural tools for bacterial genome evolution. Curr Opin Microbiol 2001; 4(5):565-9; PMID:11587934; http://dx.doi.org/10.1016/S1369-5274(00)00252-6
  • Szekeres S, Dauti M, Wilde C, Mazel D, Rowe-Magnus DA. Chromosomal toxin-antitoxin loci can diminish large-scale genome reductions in the absence of selection. Mol Microbiol 2007; 63(6):1588-605; PMID:17367382; http://dx.doi.org/10.1111/j.1365-2958.2007.05613.x
  • Brantl S. Bacterial type I toxin-antitoxin systems. RNA biology 2012; 9(12):1488-90; PMID:23324552; http://dx.doi.org/10.4161/rna.23045
  • Kawano M, Oshima T, Kasai H, Mori H. Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding for a 35-amino-acid cell-killing peptide and a cis-encoded small antisense RNA in Escherichia coli. Mol Microbiol 2002; 45(2):333-49; PMID:12123448; http://dx.doi.org/10.1046/j.1365-2958.2002.03042.x
  • Blower TR, Evans TJ, Przybilski R, Fineran PC, Salmond GPC. Viral evasion of a bacterial suicide system by RNA-based molecular mimicry enables infectious altruism. PLoS Genetics 2012; 8(10):e1003023; PMID:23109916; http://dx.doi.org/10.1371/journal.pgen.1003023
  • Findeiß S, Schmidtke C, Stadler PF, Bonas U. A novel family of plasmid-transferred anti-sense ncRNAs. RNA biology 2010; 7(2):120-4; PMID:20220307; http://dx.doi.org/10.4161/rna.7.2.11184
  • Blower TR, Short FL, Rao F, Mizuguchi K, Pei XY, Fineran PC, Luisi BF, Salmond GPC. Identification and classification of bacterial Type III toxin-antitoxin systems encoded in chromosomal and plasmid genomes. Nucleic Acids Res 2012; 40(13):6158-73; PMID:22434880; http://dx.doi.org/10.1093/nar/gks231
  • McKenzie JL, Robson J, Berney M, Smith TC, Ruthe A, Gardner PP, Arcus VL, Cook GM. A VapBC toxin-antitoxin module is a posttranscriptional regulator of metabolic flux in mycobacteria. J Bacteriol 2012; 194(9):2189-204; PMID:22366418; http://dx.doi.org/10.1128/JB.06790-11
  • Milunovic B, Morton RA, Finan TM. Cell growth inhibition upon deletion of 4 toxin-antitoxin loci from the megaplasmids of Sinorhizobium meliloti. J Bacteriol 2014; 196(4):811-24; PMID:24317400; http://dx.doi.org/10.1128/JB.01104-13
  • Kawano M. Divergently overlapping cis-encoded antisense RNA regulating toxin-antitoxin systems from E. coli. RNA biology 2012; 9(12):1520-7; PMID:23131729; http://dx.doi.org/10.4161/rna.22757
  • Pedersen K, Gerdes K. Multiple hok genes on the chromosome of Escherichia coli. Mol Microbiol 1999; 32(5):1090-102; PMID:10361310; http://dx.doi.org/10.1046/j.1365-2958.1999.01431.x
  • Brielle R, Pinel-Marie M-L, Felden B. Linking bacterial type I toxins with their actions. Curr Opin Microbiol 2016; 30:114-21; PMID:26874964; http://dx.doi.org/10.1016/j.mib.2016.01.009
  • Shokeen S, Patel S, Greenfield TJ, Brinkman C, Weaver KE. Translational regulation by an intramolecular stem-loop is required for intermolecular RNA regulation of the par addiction module. J Bacteriol 2008; 190(18):6076-83; PMID:18641135; http://dx.doi.org/10.1128/JB.00660-08
  • Weaver KE, Reddy SG, Brinkman CL, Patel S, Bayles KW, Endres JL. Identification and characterization of a family of toxin-antitoxin systems related to the Enterococcus faecalis plasmid pAD1 par addiction module. Microbiology 2009; 155(9):2930-40; PMID:19542006; http://dx.doi.org/10.1099/mic.0.030932-0
  • Coray DS, Kurenbach B, Heinemann JA. Exploring the parameters of post segregation killing using heterologous expression of secreted toxin barnase and antitoxin barstar in an E. coli case study. Microbiology 2016; PMID:27902436; http://dx.doi.org/10.1099/mic.0.000395
  • Sberro H, Leavitt A, Kiro R, Koh E, Peleg Y, Qimron U, Sorek R. Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning. Mol Cell 2013; 50(1):136-48; PMID:23478446; http://dx.doi.org/10.1016/j.molcel.2013.02.002
  • Sat B, Hazan R, Fisher T, Khaner H, Glaser G, Engelberg-Kulka H. Programmed cell death in escherichia coli: some antibiotics can trigger mazEF lethality. J Bacteriol 2001; 183(6):2041-5; PMID:11222603; http://dx.doi.org/10.1128/JB.183.6.2041-2045.2001
  • Christensen SK, Pedersen K, Hansen FG, Gerdes K. Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA. J Mol Biol 2003; 332(4):809-19; PMID:12972253; http://dx.doi.org/10.1016/S0022-2836(03)00922-7
  • Wen J, Fozo EM. sRNA antitoxins: more than one way to repress a toxin. Toxins 2014; 6(8):2310-35; PMID:25093388; http://dx.doi.org/10.3390/toxins6082310
  • Masuda H, Tan Q, Awano N, Wu KÄ, Inouye M. YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli. Mol Microbiol 2012; 84(5):979-89; PMID:22515815; http://dx.doi.org/10.1111/j.1365-2958.2012.08068.x
  • Wang X, Lord DM, Cheng H-Y, Osbourne DO, Hong SH, Sanchez-Torres V, Quiroga C, Zheng K, Herrmann T, Peti W. A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat Chem Biol 2012; 8(10):855-61; PMID:22941047; http://dx.doi.org/10.1038/nchembio.1062