1,643
Views
10
CrossRef citations to date
0
Altmetric
Point of View - Solicited

Modular arrangement of regulatory RNA elements

&
Pages 287-292 | Received 03 Nov 2016, Accepted 14 Dec 2016, Published online: 01 Feb 2017

References

  • Cech TR, Zaug AJ, Grabowski PJ. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 1981; 27:487-96; PMID:6101203; http://dx.doi.org/10.1016/0092-8674(81)90390-1
  • Peselis A, Serganov A. Themes and variations in riboswitch structure and function. Biochim Biophys Acta 2014; 1839:908-18; PMID:4643838; http://dx.doi.org/10.1016/j.bbagrm.2014.02.012
  • Serganov A, Nudler E. A decade of riboswitches. Cell 2013; 152:17-24; PMID:4215550; http://dx.doi.org/10.1016/j.cell.2012.12.024
  • Breaker RR. Prospects for riboswitch discovery and analysis. Mol Cell 2011; 43:867-79; PMID:4140403; http://dx.doi.org/10.1016/j.molcel.2011.08.024
  • Mandal M, Lee M, Barrick JE, Weinberg Z, Emilsson GM, Ruzzo WL, Breaker RR. A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 2004; 306:275-9; PMID:15472076; http://dx.doi.org/10.1126/science.1100829
  • Ruff KM, Strobel SA. Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy. RNA 2014; 20:1775-88; PMID:4201829; http://dx.doi.org/10.1261/rna.047266.114
  • Mandal M, Breaker RR. Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol 2004; 11:29-35; PMID:14718920; http://dx.doi.org/10.1038/nsmb710
  • Welz R, Breaker RR. Ligand binding and gene control characteristics of tandem riboswitches in Bacillus anthracis. RNA 2007; 13:573-82; PMID:1831863; http://dx.doi.org/10.1261/rna.407707
  • Poiata E, Meyer MM, Ames TD, Breaker RR. A variant riboswitch aptamer class for S-adenosylmethionine common in marine bacteria. RNA 2009; 15:2046-56; PMID:2764483; http://dx.doi.org/10.1261/rna.1824209
  • Sudarsan N, Hammond MC, Block KF, Welz R, Barrick JE, Roth A, Breaker RR. Tandem riboswitch architectures exhibit complex gene control functions. Science 2006; 314:300-4; PMID:17038623; http://dx.doi.org/10.1126/science.1130716
  • González JC, Peariso K, Penner-Hahn JE, Matthews RG. Cobalamin-independent methionine synthase from Escherichia coli: a zinc metalloenzyme. Biochemistry 1996; 35:12228-34; PMID:8823155; http://dx.doi.org/10.1021/bi9615452
  • Pejchal R, Ludwig ML. Cobalamin-independent methionine synthase (MetE): a face-to-face double barrel that evolved by gene duplication. PLoS Biol 2005; 3:e31; PMID:539065; http://dx.doi.org/10.1371/journal.pbio.0030031
  • Weigand JE, Suess B. Aptamers and riboswitches: perspectives in biotechnology. Appl Microbiol Biotechnol 2009; 85:229-36; PMID:19756582; http://dx.doi.org/10.1007/s00253-009-2194-2
  • Wittmann A, Suess B. Engineered riboswitches: Expanding researchers' toolbox with synthetic RNA regulators. FEBS Lett 2012; 586:2076-83; PMID:22710175; http://dx.doi.org/10.1016/j.febslet.2012.02.038
  • Liang JC, Bloom RJ, Smolke CD. Engineering biological systems with synthetic RNA molecules. Mol Cell 2011; 43:915-26; PMID:3176441; http://dx.doi.org/10.1016/j.molcel.2011.08.023
  • Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990; 249:505-10; PMID:2200121 ; http://dx.doi.org/10.1126/science.2200121 ; http://dx.doi.org/
  • Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature 1990; 346:818-22; PMID:1697402; http://dx.doi.org/10.1038/346818a0
  • Vazquez-Anderson J, Contreras LM. Regulatory RNAs: charming gene management styles for synthetic biology applications. RNA Biol 2013; 10:1778-97; PMID:3917981; http://dx.doi.org/10.4161/rna.27102
  • Jenison RD, Gill SC, Pardi A, Polisky B. High-resolution molecular discrimination by RNA. Science 1994; 263:1425-9; PMID:7510417 http://dx.doi.org/10.1126/science.7510417
  • Suess B, Fink B, Berens C, Stentz R, Hillen W. A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res 2004; 32:1610-4; PMID:390306; http://dx.doi.org/10.1093/nar/gkh321
  • Wachsmuth M, Findeiss S, Weissheimer N, Stadler PF, Mörl M. De novo design of a synthetic riboswitch that regulates transcription termination. Nucleic Acids Res 2013; 41:2541-51; PMID:3575828; http://dx.doi.org/10.1093/nar/gks1330
  • Topp S, Reynoso CM, Seeliger JC, Goldlust IS, Desai SK, Murat D, Shen A, Puri AW, Komeili A, Bertozzi CR, et al. Synthetic riboswitches that induce gene expression in diverse bacterial species. Appl Environ Microbiol 2010; 76:7881-4; PMID:2988590; http://dx.doi.org/10.1128/AEM.01537-10
  • Ceres P, Garst AD, Marcano-Velázquez JG, Batey RT. Modularity of select riboswitch expression platforms enables facile engineering of novel genetic regulatory devices. ACS Synth Biol 2013; 2:463-72; PMID:3742664; http://dx.doi.org/10.1021/sb4000096
  • Chappell J, Watters KE, Takahashi MK, Lucks JB. A renaissance in RNA synthetic biology: new mechanisms, applications and tools for the future. Curr Opin Chem Biol 2015; 28:47-56; PMID:26093826; http://dx.doi.org/10.1016/j.cbpa.2015.05.018
  • Wachsmuth M, Domin G, Lorenz R, Serfling R, Findeiss S, Stadler PF, Mörl M. Design criteria for synthetic riboswitches acting on transcription. RNA Biol 2015; 12:221-31; PMID:25826571; http://dx.doi.org/10.1080/15476286.2015.1017235
  • Kötter P, Weigand JE, Meyer B, Entian KD, Suess B. A fast and efficient translational control system for conditional expression of yeast genes. Nucleic Acids Res 2009; 37:e120; PMID:2764425; http://dx.doi.org/10.1093/nar/gkp578
  • Wieland M, Benz A, Klauser B, Hartig JS. Artificial ribozyme switches containing natural riboswitch aptamer domains. Angew Chem Int Ed Engl 2009; 48:2715-8; PMID:19156802; http://dx.doi.org/10.1002/anie.200805311
  • Wieland M, Hartig JS. Improved aptazyme design and in vivo screening enable riboswitching in bacteria. Angew Chem Int Ed Engl 2008; 47:2604-7; PMID:18270990; http://dx.doi.org/10.1002/anie.200703700
  • Win MN, Smolke CD. Higher-order cellular information processing with synthetic RNA devices. Science 2008; 322:456-60; PMID:2805114; http://dx.doi.org/10.1126/science.1160311
  • Saragliadis A, Krajewski SS, Rehm C, Narberhaus F, Hartig JS. Thermozymes: Synthetic RNA thermometers based on ribozyme activity. RNA Biol 2013; 10:1010-6; PMID:4111729; http://dx.doi.org/10.4161/rna.24482
  • Krajewski SS, Narberhaus F. Temperature-driven differential gene expression by RNA thermosensors. Biochim Biophys Acta 2014; 1839:978-88; PMID:24657524; http://dx.doi.org/10.1016/j.bbagrm.2014.03.006
  • Weigand JE, Suess B. Tetracycline aptamer-controlled regulation of pre-mRNA splicing in yeast. Nucleic Acids Res 2007; 35:4179-85; PMID:1919484; http://dx.doi.org/10.1093/nar/gkm425
  • Roßmanith J, Narberhaus F. Exploring the modular nature of riboswitches and RNA thermometers. Nucleic Acids Res 2016; 44:5410-23; PMID:27060146 http://dx.doi.org/10.1093/nar/gkw232
  • Sudarsan N, Cohen-Chalamish S, Nakamura S, Emilsson GM, Breaker RR. Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. Chem Biol 2005; 12:1325-35; PMID:16356850; http://dx.doi.org/10.1016/j.chembiol.2005.10.007
  • Mironov AS, Gusarov I, Rafikov R, Lopez LE, Shatalin K, Kreneva RA, Perumov DA, Nudler E. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 2002; 111:747-56; PMID:12464185; http://dx.doi.org/10.1016/S0092-8674(02)01134-0
  • Sudarsan N, Wickiser JK, Nakamura S, Ebert MS, Breaker RR. An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev 2003; 17:2688-97; PMID:280618; http://dx.doi.org/10.1101/gad.1140003
  • Grundy FJ, Lehman SC, Henkin TM. The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Proc Natl Acad Sci U S A 2003; 100:12057-62; PMID:218712; http://dx.doi.org/10.1073/pnas.2133705100
  • Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? Nucleic Acids Res 2003; 31:6748-57; PMID:290268; http://dx.doi.org/10.1093/nar/gkg900
  • Waldminghaus T, Heidrich N, Brantl S, Narberhaus F. FourU: a novel type of RNA thermometer in Salmonella. Mol Microbiol 2007; 65:413-24; PMID:17630972 http://dx.doi.org/10.1111/j.1365-2958.2007.05794.x
  • Lynch SA, Desai SK, Sajja HK, Gallivan JP. A high-throughput screen for synthetic riboswitches reveals mechanistic insights into their function. Chem Biol 2007; 14:173-84; PMID:1858662; http://dx.doi.org/10.1016/j.chembiol.2006.12.008
  • Lynch SA, Gallivan JP. A flow cytometry-based screen for synthetic riboswitches. Nucleic Acids Res 2009; 37:184-92; PMID:2615613; http://dx.doi.org/10.1093/nar/gkn924
  • Topp S, Gallivan JP. Random walks to synthetic riboswitches–a high-throughput selection based on cell motility. Chembiochem 2008; 9:210-3; PMID:18098254 http://dx.doi.org/10.1002/cbic.200700546
  • Dar D, Shamir M, Mellin JR, Koutero M, Stern-Ginossar N, Cossart P, Sorek R. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science 2016; 352:aad9822; PMID:27120414; http://dx.doi.org/10.1126/science.aad9822
  • Sommer MO, Suess B. RIBOSWITCHES. (Meta-)genome mining for new ribo-regulators. Science 2016; 352:144-5; PMID:27124438; http://dx.doi.org/10.1126/science.aaf6189
  • Weinberg Z, Kim PB, Chen TH, Li S, Harris KA, Lunse CE, Breaker RR. New classes of self-cleaving ribozymes revealed by comparative genomics analysis. Nat Chem Biol 2015; 11:606-10; PMID:26167874; http://dx.doi.org/10.1038/nchembio.1846
  • Righetti F, Nuss AM, Twittenhoff C, Beele S, Urban K, Will S, Bernhart SH, Stadler PF, Dersch P, Narberhaus F. Temperature-responsive in vitro RNA structurome of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 2016; 113:7237-42; PMID:27298343; http://dx.doi.org/10.1073/pnas.1523004113
  • Breaker RR. Riboswitches and the RNA world. Cold Spring Harb Perspect Biol 2012; 4:a003566; PMID:3281570; http://dx.doi.org/10.1101/cshperspect.a003566